【題目】如圖,四邊形ABCD中,點(diǎn)M、N分別在AB,BC上,將△BMN沿MN翻折,得△FMN,若MF∥AD,F(xiàn)N∥DC,∠A=100°,∠C=70°,則∠B= .
【答案】95°
【解析】解:∵M(jìn)F∥AD,F(xiàn)N∥DC,∠A=100°,∠C=70°, ∴∠BMF=80°,∠FNB=70°,
∵將△BMN沿MN翻折,得△FMN,
∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,
∴∠F=∠B=180°﹣50°﹣35°=95°,
所以答案是:95°.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行線的性質(zhì)(兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ)),還要掌握三角形的內(nèi)角和外角(三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P、Q是反比例函數(shù)y= 圖像上的兩點(diǎn),PA⊥y軸于點(diǎn)A,QN⊥x軸于點(diǎn)N,作PM⊥x軸于點(diǎn)M,QB⊥y軸于點(diǎn)B,連接PB、QM,△ABP的面積記為S1 , △QMN的面積記為S2 , 則S1S2 . (填“>”或“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°,AB的中垂線DE交AC于D,交AB于E,下述結(jié)論:①BD平分∠ABC;②AD=BD=BC;③△BDC的周長(zhǎng)等于AB+BC;④D是AC中點(diǎn).其中正確的命題序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠生產(chǎn)A,B兩種產(chǎn)品,其單價(jià)隨市場(chǎng)變化而做相應(yīng)調(diào)整.營(yíng)銷人員根據(jù)前三次單價(jià)變化的情況,繪制了單價(jià)變化不完整的統(tǒng)計(jì)表及折線圖.
A,B產(chǎn)品單價(jià)變化統(tǒng)計(jì)表
第一次 | 第二次 | 第三次 | |
A產(chǎn)品單價(jià)(元/件) | 6 | 5.2 | 6.5 |
B產(chǎn)品單價(jià)(元/件) | 3.5 | 4 | 3 |
并求得了A產(chǎn)品三次單價(jià)的平均數(shù)和方差:
=5.9,SA2= [(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=
(1)在折線圖中畫出B產(chǎn)品的單價(jià)變化的情況;
(2)求B產(chǎn)品三次單價(jià)的方差;
(3)該廠決定第四次調(diào)價(jià),A產(chǎn)品的單價(jià)仍為6.5元/件,B產(chǎn)品的單價(jià)比3元/件的基礎(chǔ)上調(diào)m%(m>0),但調(diào)價(jià)后不能超過(guò)4元/件,并且使得A產(chǎn)品這四次單價(jià)的中位數(shù)是B產(chǎn)品四次單價(jià)中位數(shù)的2倍少1,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是正方形ABCD的對(duì)角線,BC=2,邊BC在其所在的直線上平移,將通過(guò)平移得到的線段記為PQ,連接PA、QD,并過(guò)點(diǎn)Q作QO⊥BD,垂足為O,連接OA、OP.
(1)請(qǐng)直接寫出線段BC在平移過(guò)程中,四邊形APQD是什么四邊形?
(2)請(qǐng)判斷OA、OP之間的數(shù)量關(guān)系和位置關(guān)系,并加以證明;
(3)在平移變換過(guò)程中,設(shè)y=S△OPB,BP=x(0≤x≤2),求y與x之間的函數(shù)關(guān)系式,并求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y=(2m﹣1)xm2﹣2 , 當(dāng)x>0時(shí),y隨著x的增大而減。
(1)求m的值;
(2)當(dāng)1<x<4時(shí),求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市經(jīng)銷A、B兩種商品,A種商品每件進(jìn)價(jià)20元,售價(jià)30元;B種商品每件進(jìn)價(jià)35元,售價(jià)48元.
(1)該超市準(zhǔn)備用800元去購(gòu)進(jìn)A、B兩種商品若干件,怎樣購(gòu)進(jìn)才能使超市經(jīng)銷這兩種商品所獲利潤(rùn)最大?(其中B種商品不少于7件)
(2)在“五一”期間,該商場(chǎng)對(duì)A、B兩種商品進(jìn)行如下優(yōu)惠促銷活動(dòng):
打折前一次購(gòu)物總金額 | 優(yōu)惠措施 |
不超過(guò)300元 | 不優(yōu)惠 |
超過(guò)300元且不超過(guò)400元 | 售價(jià)打八折 |
超過(guò)400元 | 售價(jià)打七折 |
促銷活動(dòng)期間小穎去該超市購(gòu)買A種商品,小華去該超市購(gòu)買B種商品,分別付款210元與268.8元.促銷活動(dòng)期間小明決定一次去購(gòu)買小穎和小華購(gòu)買的同樣多的商品,他需付款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出五個(gè)命題:①若x=﹣1,則x3=﹣1;②角平分線上的點(diǎn)到角的兩邊距離相等;③相等的角是對(duì)頂角;④若x2=4,則x=2;⑤面積相等的兩個(gè)三角形全等,是真命題的個(gè)數(shù)有( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com