【題目】如圖所示,按下列方法將數(shù)軸的正半軸繞在一個圓上(該圓周長為個單位長,且在圓周的三等分點處分別標(biāo)上了數(shù)字,,)上:先讓原點與圓周上所對應(yīng)的點重合,再將正半軸按順時針方向繞在該圓周上,使數(shù)軸上,,,,所對應(yīng)的點分別與圓周上,,,,所對應(yīng)的點重合,這樣,正半軸上的整數(shù)就與圓周上的數(shù)字建立了一種對應(yīng)關(guān)系.
(1)圓周上數(shù)字與數(shù)軸上的數(shù)對應(yīng),則__________.
(2)數(shù)軸上的一個整數(shù)點剛剛繞過圓周圈(為正整數(shù))后,并落在圓周上數(shù)字所對應(yīng)的位置,這個整數(shù)是____________.(用含的代數(shù)式表示).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,O是直線AB上的一點,∠COD是直角,OE平分∠BOC.
(1)若∠AOC=30°時,則∠DOE的度數(shù)為_____;
(2)將圖①中的∠COD繞頂點O順時針旋轉(zhuǎn)至圖②的位置,其它條件不變,探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由;
(3)將圖①中的∠COD繞頂點O順時針旋轉(zhuǎn)至圖③的位置,其他條件不變.直接寫出∠AOC和∠DOE的度數(shù)之間的關(guān)系:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,在平行四邊形中,對角線、交于點.過點的直線分別交邊、于點、.易證:(不需要證明).
探究:若圖①中的直線分別交邊、的延長線于點、,其它條件不變,如圖②.
求證:.
應(yīng)用:在圖②中,連結(jié).若,,,,則的長是__________,四邊形的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段MN是周長為36cm的圓的直徑(圓心為O),動點A從點M出發(fā),以的速度沿順時針方向在圓周上運動,經(jīng)過點N時,其速度變?yōu)?/span>,并以這個速度繼續(xù)沿順時針方向運動之點M后停止。在動點A運動的同時,動點B從點N出發(fā),以的速度沿逆時針方向在圓周上運動,繞一周后停止運動。設(shè)點A、點B運動時間為.
(1)連接OA、OB,當(dāng)t=4時, = °,在整個運動過程中,當(dāng)時,點A運動的路程為 cm(第2空結(jié)果用含t的式子表示);
(2)當(dāng)A、B兩點相遇時,求運動時間t;
(3)連接OA、OB,當(dāng)時,請直接寫出所有符合條件的運動時間t.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MAN=120°,AC平分∠MAN.B、D分別在射線AN、AM上.
(1)在圖1中,當(dāng)∠ABC=∠ADC=90°時,求證:AD+AB=AC
(2)若把(1)中的條件“∠ABC=∠ADC=90°”改為∠ABC+∠ADC=180°,其他條件不變,如圖2所示,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
(圖1) (圖2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函數(shù)y=在第一象限內(nèi)的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=4.
(1)求反比例函數(shù)解析式;
(2)求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1:y=-2x+4與x、y軸分別交于點N、C,與直線l2:y=kx+b(k≠0)交于點M,點M的橫坐標(biāo)為1,直線l2與x軸的交點為A(-2,0)
(1)求k,b的值;
(2)求四邊形MNOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥BC且AB=BC,DE⊥CD且DE=CD,請按照圖中所標(biāo)注的數(shù)據(jù),計算圖中實線所圍成的圖形的面積S是( )
A. 36B. 48C. 72D. 108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F,連接EF,則四邊形ABEF是菱形.根據(jù)兩人的作法可判斷( )
A. 甲正確,乙錯誤 B. 乙正確,甲錯誤
C. 甲、乙均正確 D. 甲、乙均錯誤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com