【題目】觀察下列等式的規(guī)律,解答下列問題:

(1)按此規(guī)律,第④個等式為_________;第個等式為_______;(用含的代數(shù)式表示,為正整數(shù))

(2)按此規(guī)律,計算:

【答案】(1)2×34,2×3n;(2)①726;②(3n+1-3).

【解析】

(1)對比列式中的規(guī)律變化,找到算式和序號的規(guī)律即可求解;

(2)找到算式規(guī)律,根據(jù)錯位相減的方法即可求解.

1)由題意得:

第④個等式為:35-34=2×34,

n個等式為3n+1-3n=2×3n,

故答案為:35-34=2×34, 3n+1-3n=2×3n.

2

①2×31+2×32+2×33+2×34+2×35

=32-3+33-32+34-33+35-34+36-35

=36-3

=726.

②31+32+33+···+3n

(32-3)+(33-32)+(34-33)+···+(3n+1-3n)

(32-3+33-32+34-33+···+3n+1-3n)

(3n+1-3).

故答案為:①726, ②(3n+1-3).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖像與反比例函數(shù)的圖像交于點和點,與軸交于點.

(1)求反比例函數(shù)和一次函數(shù)的表達式.

(2)若在軸上有一點,其橫坐標是1,連接、,的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點,與y軸交于點C,其頂點為D.
(1)求拋物線的解析式;
(2)一動點M從點D出發(fā),以每秒1個單位的速度沿拋物線的對稱軸向下運動,連OM,BM,設運動時間為t秒(t=0),在點M的運動過程中,當∠OMB=90°時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,cot∠ADB= ,AB=16.點E在射線BC上,點F在線段BD上,且∠DEF=∠ADB.

(1)求線段BD的長;
(2)設BE=x,△DEF的面積為y,求y關于x的函數(shù)關系式,并寫出函數(shù)定義域;
(3)當△DEF為等腰三角形時,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】30箱蘋果,以每箱20千克為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:

與標準質質量的差

(單位:千克)

1

2

箱數(shù)

2

6

10

8

4

(1)這30箱蘋果中,最重的一箱比最輕的一箱重多少千克?

(2)與標準質量比較,這30箱蘋果總計超過或不足多少千克?

(3)若蘋果每千克售價6元,則出售這30箱蘋果可賣多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點OBD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC中,BF是AC邊上中線,點D在BF上,連接AD,在AD的右側作等邊△ADE,連接EF,當△AEF周長最小時,∠CFE的大小是( 。

A. 30° B. 45° C. 60° D. 90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.
(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)x2y﹣3xy2+2x2y﹣y2x ;(2)2(2a2﹣9b)﹣3(3a2﹣7b);

(3)2a2﹣[(ab﹣4a2)+8ab]﹣ab.

查看答案和解析>>

同步練習冊答案