(2002•十堰)如圖,在平面直角坐標(biāo)系中,ABCD為等腰梯形,AD∥BC,BC=2AD,梯形ABCD的面積S=18,中位線長為3,點(diǎn)B的坐標(biāo)為(1,0).
(1)求過A、B、C、D四點(diǎn)的拋物線的解析式;
(2)若P是拋物線上的任意一點(diǎn),試比較△PBC的面積與梯形ABCD面積S的大小,并求出P點(diǎn)的坐標(biāo),不能求出時(shí),請求出P點(diǎn)縱坐標(biāo)的取值范圍.

【答案】分析:(1)已知了等腰梯形的中位線長為3,因此BC+AD=6,由于BC=2AD,因此BC=4,AD=2.然后根據(jù)梯形的面積為18可求出A、D的縱坐標(biāo),再根據(jù)B點(diǎn)的坐標(biāo)即可求出A、C、D的坐標(biāo),然后用待定系數(shù)法即可求出拋物線的解析式.
(2)可求出△PBC與四邊形ABCD的面積相等時(shí),P點(diǎn)的縱坐標(biāo),然后根據(jù)此來判斷兩者的關(guān)系(不同的P點(diǎn)的取值范圍對應(yīng)的大小關(guān)系不同).
解答:解:(1)依題意有:BC=2AD,BC+AD=6;
∴BC=4,AD=2;
∵梯形ABCD的面積為18,即S=3×yA=18,
∴yA=6
∴A(2,6),B(1,0),C(5,0),D(4,6)
設(shè)拋物線的解析式為y=a(x-1)(x-5),
則有:a×1×(-3)=6,a=-2
∴y=-2(x-1)(x-5)=-2(x-3)2+8.

(2)當(dāng)S△PBC=S=18時(shí),
S△PBC=BC•|yP|=18,
∴|yP|=9
易知拋物線的頂點(diǎn)坐標(biāo)為(3,8);
因此當(dāng)-9<yP≤8時(shí),S△PBC<S
當(dāng)yP=-9時(shí),S△PBC=S
當(dāng)yP<-9時(shí),S△PBC>S.
點(diǎn)評:本題考查了等腰梯形的性質(zhì)、二次函數(shù)解析式的確定、圖形面積的求法等知識點(diǎn).綜合性較強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年湖北省十堰市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•十堰)如圖,在平面直角坐標(biāo)系中,ABCD為等腰梯形,AD∥BC,BC=2AD,梯形ABCD的面積S=18,中位線長為3,點(diǎn)B的坐標(biāo)為(1,0).
(1)求過A、B、C、D四點(diǎn)的拋物線的解析式;
(2)若P是拋物線上的任意一點(diǎn),試比較△PBC的面積與梯形ABCD面積S的大小,并求出P點(diǎn)的坐標(biāo),不能求出時(shí),請求出P點(diǎn)縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圖形的相似》(01)(解析版) 題型:選擇題

(2002•十堰)如圖,在△ABC中,∠C=90°,∠A=30°,BE是∠B的平分線,以AE為直徑的圓O交AB于D,則圖中相似三角形有( )

A.6對
B.5對
C.4對
D.3對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(13)(解析版) 題型:解答題

(2002•十堰)如圖,⊙O1與⊙O2外切于點(diǎn)A,BC是兩圓的公切線,B、C為切點(diǎn),則有AB⊥AC.

(1)當(dāng)⊙O1向左運(yùn)動,⊙O2向右運(yùn)動到圖1的位置時(shí),BC仍為兩圓的公切線,O1O2交⊙O1于A點(diǎn),交⊙O2于D點(diǎn),BA、CD的延長線相交于E點(diǎn).請判斷EB與EC是否垂直?并證明你的結(jié)論;

(2)當(dāng)⊙O1向右運(yùn)動,⊙O2向左運(yùn)動到圖2的位置時(shí),兩圓相交于A、D兩點(diǎn),BC仍與兩圓相切.若∠D=46°,試求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(08)(解析版) 題型:填空題

(2002•十堰)如圖,在△ABC中,∠A=90°,分別以B、C為圓心的等圓外切,圓的半徑為1cm,則圖中陰影部分的面積為    cm2.若兩圓外離,其它條件都不變,則圖中陰影部分的面積為    cm2

查看答案和解析>>

同步練習(xí)冊答案