如圖,一次函數(shù) 與反比例函數(shù)的圖象交于點(diǎn) 和,與軸交于點(diǎn).(1)           ,            ;

(2)根據(jù)函數(shù)圖象可知,當(dāng) 時,的取值范圍是                   ;
(3)過點(diǎn)軸于點(diǎn),點(diǎn)是反比例函數(shù)在第一象限的圖象上一點(diǎn),設(shè)直線與線段交于點(diǎn),當(dāng)時,求點(diǎn)的坐標(biāo).

見解析

解析試題分析:(1)一次函數(shù) 與反比例函數(shù)的圖象交于點(diǎn) 和分別代入,得到:,16,所以,,再把代入,得到:m=4,所以 
(2)根據(jù)函數(shù)圖象可知,當(dāng) 時,一次函數(shù)圖象在反比例函數(shù)圖象的上方,這時的取值范圍是-8<x<0或x>4.
(3)由(1)知,,m=4,點(diǎn)C的坐標(biāo)是(0,2)點(diǎn)A的坐標(biāo)是(4,4).所以CO=2,AD=OD=4.可得, 
,即OD·DE=4, DE=2.,得到點(diǎn)E的坐標(biāo)為(4,2).又點(diǎn)E在直線OP上,求得直線OP的解析式是.所以求出直線OP與的圖象在第一象限內(nèi)的交點(diǎn)P的坐標(biāo)即可.
試題解析:(1),16;,
(2)根據(jù)函數(shù)圖象可知,當(dāng) 時,的取值范圍是-8<x<0或x>4;
(3)由(1)知,
∴m=4,點(diǎn)C的坐標(biāo)是(0,2)點(diǎn)A的坐標(biāo)是(4,4).
∴CO=2,AD=OD=4.
 


OD·DE=4,∴DE=2.
∴點(diǎn)E的坐標(biāo)為(4,2).
又點(diǎn)E在直線OP上,∴直線OP的解析式是.
∴直線OP與的圖象在第一象限內(nèi)的交點(diǎn)P的坐標(biāo)為().
考點(diǎn):1.待定系數(shù)法求解析式.2.函數(shù)和不等式的關(guān)系.3.函數(shù)與方程組的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

定義:如果一個y與x的函數(shù)圖象經(jīng)過平移后能與某反比例函數(shù)的圖象重合,那么稱這個函數(shù)是y與x的“反比例平移函數(shù)”.例如:的圖象向左平移2個單位,再向下平移1個單位得到的圖象,則是y與x的“反比例平移函數(shù)”.
(1)若矩形的兩邊分別是2cm、3cm,當(dāng)這兩邊分別增加x(cm)、y(cm)后,得到的新矩形的面積為8cm2,求y與x的函數(shù)表達(dá)式,并判斷這個函數(shù)是否為“反比例平移函數(shù)”.
(2)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(9,0)、(0,3).點(diǎn)D是OA的中點(diǎn),連接OB、CD交于點(diǎn)E,“反比例平移函數(shù)”的圖象經(jīng)過B、E兩點(diǎn).則這個“反比例平移函數(shù)”的表達(dá)式為           ;這個“反比例平移函數(shù)”的圖象經(jīng)過適當(dāng)?shù)淖儞Q與某一個反比例函數(shù)的圖象重合,請寫出這個反比例函數(shù)的表達(dá)式.
(3)在(2)的條件下,已知過線段BE中點(diǎn)的一條直線l交這個“反比例平移函數(shù)”圖象于P、Q兩點(diǎn)(P在Q的右側(cè)),若B、E、P、Q為頂點(diǎn)組成的四邊形面積為16,請求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為了預(yù)防流感,某學(xué)校對教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例,藥物燃燒后,y與x成反比例(如圖),現(xiàn)測藥物8分鐘燃畢,此時空氣中每立方米含藥量為6毫克,請根據(jù)題中所提供的信息,回答下列問題

(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為         ,自變量x的取值范圍是      ;藥物燃燒完后,y與x的函數(shù)關(guān)系式為         
(2)研究表明,當(dāng)空氣中的每立方米的含藥量低于1.6毫克時學(xué)生方可進(jìn)教室,那么從消毒開始,至少需要經(jīng)過幾分鐘后,學(xué)生才能回到教室.
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效地殺滅空氣中的病菌,那么此次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,等腰梯形ABCD放置在平面直角坐標(biāo)系中,已知A(-2,0)、B(6,0)、A(0,3),反比例函數(shù)的圖象經(jīng)過點(diǎn)C.

(1)求C點(diǎn)坐標(biāo)和反比例函數(shù)的解析式;(6分)
(2)將等腰梯形ABCD向上平移個單位后,使點(diǎn)B恰好落在雙曲線上,求的值.(4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)M,N,已點(diǎn)M的坐標(biāo)為(1,3),點(diǎn)N的縱坐標(biāo)為-1.

(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)當(dāng)y1≥3時,求x的取值范圍;
(3)求使y1>y2時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形ABCD為正方形.點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B的坐標(biāo)為(0,-3),反比例函數(shù)的圖象經(jīng)過點(diǎn)C,一次函數(shù)的圖象經(jīng)過點(diǎn)C,一次函數(shù)的圖象經(jīng)過點(diǎn)A,

(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)求點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),△OAP的面積恰好等于正方形ABCD的面積,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過點(diǎn)A(2,3).
(1)求這個函數(shù)的解析式;
(2)判斷點(diǎn)B(-1,6),C(3,2)是否在這個函數(shù)的圖象上,并說明理由;
(3)當(dāng)-3<x<-1時,求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=kx的圖象與反比例函數(shù)的圖象有一個交點(diǎn)A(m,2).

(1)求m的值;
(2)求正比例函數(shù)y=kx的解析式;
(3)試判斷點(diǎn)B(2,3)是否在正比例函數(shù)圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:計算題

為了決定誰將獲得僅有的一張科普報告入場券,甲和乙設(shè)計了如下的一個游戲:口袋中有編號分別為1、2、3的紅球三個和編號為4的白球一個,四個球除了顏色或編號不同外,沒有任何別的區(qū)別,摸球之前將小球攪勻,摸球的人都蒙上眼睛.先甲無放回摸兩次,每次摸出一個球;再把甲摸出的兩個球同時放回口袋后,乙再摸,乙只摸一個球.如果甲摸出的兩個球都是紅色,甲得1分,否則,甲得0分;如果乙摸出的球是白色,乙得1分,否則,乙得0分 ;得分高的獲得入場券,如果得分相同,游戲重來.
(1)(4分)運(yùn)用列表或畫樹狀圖求甲得1分的概率;
(2)(4分)這個游戲是否公平?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案