【題目】如圖,在△ABC中,AB=AC,DBC的中點(diǎn),連接AD,EBC的延長(zhǎng)線上,連接AE,∠E=2CAD,下列結(jié)論:

ADBC;

②∠E=BAC;

CE=2CD

AE=BE

其中正確的個(gè)數(shù)是( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】C

【解析】

等腰三角形的性質(zhì),“三線合一”,頂角的平分線,底邊的高和底邊上的中線,三條線互相重合便可推得.

解:①∵在△ABC中,AB=AC,DBC的中點(diǎn),

ADBC;

②∵在△ABC中,AB=AC,DBC的中點(diǎn),

∴∠BAC=2CAD,

∵∠E=2CAD

∴∠E=BAC

③無法證明CE=2CD

④∵在中,AB=AC,

∴∠B=ACB,

∵∠ACB=E+CAE,∠E=BAC,

∴∠B=EAB,

AE=BE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為元,按定價(jià)元出售,每月可銷售萬件.為了增加銷量,公司決定采取降價(jià)的辦法,經(jīng)市場(chǎng)調(diào)研,每降價(jià)元,月銷售量可增加萬件.

(1)求出月銷售量(萬件)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式(不必寫的取值范圍);

(2)求出月銷售利潤(rùn)(萬元)(利潤(rùn)售價(jià)-成本價(jià))與銷售單價(jià)(元)之間的函數(shù)關(guān)系式(不必寫的取值范圍);

(3)請(qǐng)你通過(2)中的函數(shù)關(guān)系式及其大致圖象幫助公司確定產(chǎn)品的銷售單價(jià)范圍,使月銷售利潤(rùn)不低于萬元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DBAC,且DB=ACEAC的中點(diǎn),

1)求證:BC=DE

2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A(1,4),B(a,b),其中a>1.過點(diǎn)Ax軸垂線,垂足為C,過點(diǎn)By軸垂線,垂足為D,ACBD交于點(diǎn)E,連接AD,DC,CB.

(1)求k的值;

(2)求證:DCAB;

(3)當(dāng)ADBC時(shí),求直線AB的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓O的在直徑,AD、BC分別切⊙OA、B兩點(diǎn),CD⊙O于點(diǎn)E,連接ODOC,下列結(jié)論:①∠DOC=90°②AD+BC=CD,,④ODOC=DEEC,,正確的有( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在坐標(biāo)平面內(nèi),點(diǎn)O是坐標(biāo)原點(diǎn),A0,6),B2,0),且∠OBA=60°,將△OAB沿直線AB翻折,得到△CAB,點(diǎn)O與點(diǎn)C對(duì)應(yīng).

1)求點(diǎn)C的坐標(biāo):

2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以2個(gè)單位長(zhǎng)度/秒的速度沿線段OA向終點(diǎn)A運(yùn)動(dòng),設(shè)△POB的面積為SS≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求St的關(guān)系式,并直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電商場(chǎng)計(jì)劃用9萬元從生產(chǎn)廠家購(gòu)進(jìn)50臺(tái)電視機(jī),已知該廠家生產(chǎn)3種不同型號(hào)的電視機(jī),出廠價(jià)分別為A種每臺(tái)1500元,B種每臺(tái)2100元,C種每臺(tái)2500元.

1)若家電商場(chǎng)同時(shí)購(gòu)進(jìn)兩種不同型號(hào)的電視機(jī)共50臺(tái),用去9萬元,請(qǐng)你計(jì)算一下商場(chǎng)有哪幾種進(jìn)貨方案?

2)若商場(chǎng)銷售一臺(tái)A種電視機(jī)可獲利150元,銷售一臺(tái)B種電視機(jī)可獲利200元,銷售一臺(tái)C種電視機(jī)可獲利250元,在同時(shí)購(gòu)進(jìn)兩種不同型號(hào)的電視機(jī)方案中,為了使銷售時(shí)獲利最多,應(yīng)選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列游戲?qū)﹄p方公平的是(

A. 隨意轉(zhuǎn)動(dòng)被等分成個(gè)扇形,且分別均勻涂有紅、黃、綠三種顏色的轉(zhuǎn)盤,若指針指向綠色區(qū)域,則小明勝,否則小亮勝

B. 從一個(gè)裝有個(gè)紅球,個(gè)黃球和個(gè)黑球(這些球除顏色外完全相同)的袋中任意摸出一個(gè)球,若是紅球,則小明勝,否則小亮勝

C. 投擲一枚均勻的正方體形狀的骰子,若偶數(shù)點(diǎn)朝上,則小明勝,若是奇數(shù)點(diǎn)朝上,則小亮勝

D. 從分別標(biāo)有數(shù),,的五張紙條中,任意抽取一張,若抽到的紙條所標(biāo)的數(shù)字為偶數(shù),則小明勝,若抽到的紙條所標(biāo)的數(shù)字為奇數(shù),則小亮勝

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為參加學(xué)校藝術(shù)節(jié)閉幕演出,八年級(jí)一班欲租用男、女演出服裝若干套以供演出時(shí)使用,已知4套男裝和6套女裝租用一天共需租金490元,6套男裝和10套女裝租用一天共需790元.

1)租用男裝、女裝一天的價(jià)格分別是多少?

2)由于演出時(shí)間錯(cuò)開租用高峰時(shí)段,男裝、女裝一天的租金分別給予9折和8折優(yōu)惠,若該班演出團(tuán)由5名男生和12名女生組成,求在演出當(dāng)天該班租用服裝實(shí)際支付的租金是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案