【題目】如圖,在中,,,,過點作的平行線與的平分線交于點,與交于點,則的長為( )
A.8B.C.10D.
【答案】D
【解析】
首先根據等腰三角形的性質得出∠ABC=∠ACB,然后根據角平分線的性質得出∠ABE=∠CBE=36°,再由平行線的性質得出∠E=∠CBE=36°,進而得出∠ABE=∠E,AB=AE,再由∠ADE=∠BDC=∠BAC+∠ABE=72°得出∠CAE=∠ACB=72°,AB=DE,BD=BC,進而得出BE=BD+DE=AB+BC,最后運用三角函數即可得出BE.
∵在中,,,
∴∠ABC=∠ACB==72°
又∵BE為∠ABC的角平分線
∴∠ABE=∠CBE=36°
又∵AE∥BC
∴∠E=∠CBE=36°
∴∠ABE=∠E
∴AB=AE
又∵∠ADE=∠BDC=∠BAC+∠ABE=72°
∴∠CAE=∠ACB=72°
∴AE=DE,BD=BC
∴AB=DE,BD=BC
∴BE=BD+DE=AB+BC
又∵
∴BE=
故答案為D.
科目:初中數學 來源: 題型:
【題目】如圖,已知△AOB和△A1OB1是以點O為位似中心的位似圖形,且△AOB和△A1OB1的周長之比為1:2,點B的坐標為(-1,2),則點B1的坐標為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=8,點E是邊AD上的一個動點,把△BAE沿BE折疊,點A落在A′處,如果A′恰在矩形的對角線上,則AE的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=6,AB=10,一個三角形的直角頂點E是邊AB上的一動點,一直角邊過點D,另一直角邊與BC交于F,若AE=x,BF=y,則y關于x的函數關系的圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC中,∠C=90°,AB=1,tanA=,過AB邊上一點P作PE⊥AC于E,PF⊥BC于F,E、F是垂足,則EF的最小值等于_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數學課上,老師要求在一個已知的中,利用尺規(guī)作出一個菱形.
(1)小明的作法如下:如圖1,連接,作的垂直平分線分別交,于點,,連接,.請你判斷小明的作法是否正確;若正確,說明理由;若不正確,請你作出符合條件的菱形;
(2)小亮的作法:如圖2,分別作,的平分線,,分別交,于點,,連接,則四邊形是菱形.請你直接判斷小亮的作法是否正確.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某廠按用戶需求生產一種產品,成本每件20萬元,規(guī)定每件售價不低于成本,且不高于40萬元。經市場調查,每年的銷售量y(件)與每件售價x(萬元)滿足一次函數關系,部分數據如下表:
售價x(萬元/件) | 25 | 30 | 35 |
銷售量y(件) | 50 | 40 | 30 |
(1)求y與x之間的函數表達式;
(2)設商品每年的總利潤為W(萬元),求W與x之間的函數表達式(利潤=收入-成本);
(3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少萬元時獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以AD為直徑的半圓O經過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,⊙O1與x軸相切于點A(﹣3,0),與y軸相交于B、C兩點,且BC=8,連接AB.
(1)求證:∠ABO1=∠ABO;
(2)求AB的長;
(3)如圖2,⊙O2經過A、B兩點,與y軸的正半軸交于點M,與O1B的延長線交于點N,求出BM﹣BN的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com