【題目】如圖所示,以的邊為直徑作,點在上,是的弦,,過點作于點,交于點,過點作交的延長線于點.
(1)求證:是的切線;
(2)求證:;
(3)若,CG=4,求的長.
【答案】(1)證明見解析;(2)證明見解析;(3)
【解析】
(1)連接OC,先證得,根據(jù)垂徑定理得到OC⊥BD,根據(jù)CE//BD推出OC⊥CE,即可得到結(jié)論.
(2)根據(jù)圓周角定理得出∠ACB=90°,然后根據(jù)同角的余角相等得出∠A=∠BCF,即可證得∠BCF=∠CBD,根據(jù)同角對等邊即可證得結(jié)論.
(3)連接AD,根據(jù)圓周角定理得出∠ADB=90°,即可求得∠BAD=60°,根據(jù)圓周角定理得出∠DAC=∠BAC=30°,解直角三角形求得,然后根據(jù)三角形相似和等腰三角形的判定即可求得BE的值.
(1)連接OC
∵∠A=∠CBD
∴
∴OC⊥BD
∵CE//BD
∴OC⊥CE
∴CE是⊙O的切線
(2)∵AB為直徑
∴∠ACB=90°
∵CF⊥AB
∴∠ACB=∠CFB=90°
∵∠ABC=∠CBF
∴∠A=∠BCF
∵∠A=∠CBD
∴∠BCF=∠CBD
∴CG=BG
(3)連接AD,
∵AB為直徑
∴∠ADB=90°
∵∠DBA=30°
∴∠BAD=60°
∵
∴∠DAC=∠BAC=∠BAD=30°
∴
∵CE//BD,
∴∠E=∠DBA=30°
∴AC=CE,
∴
∵∠BAC =∠BCF=∠CBD=30°
∴∠BCE=30°
∴BE=BC,
∴△CGB∽△CBE,
∴
∵CG=4,
∴BC=
∴BE=
故答案為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O為△ABC的外接圓,直線MN與⊙O相切于點C,弦BD∥MN,AC與BD相交于點E.
(1)求證:∠CAB=∠CBD;
(2)若BC=5,BD =8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射擊運動員在訓(xùn)練中射擊了10次,成績?nèi)鐖D,下列結(jié)論正確的是( )
A.平均數(shù)是8B.眾數(shù)是8 C.中位數(shù)是9 D.方差是1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若△ABC繞點A逆時針旋轉(zhuǎn)α后,與△ADE構(gòu)成位似圖形,則我們稱△ABC與△ADE互為“旋轉(zhuǎn)位似圖形”.
(1)知識理解:
如圖1,△ABC與△ADE互為“旋轉(zhuǎn)位似圖形”.
①若α=25°,∠D=100°,∠C=28°,則∠BAE= ;
②若AD=6,DE=7,AB=4,則BC=
(2)知識運用:
如圖2,在四邊形ABCD中,∠ADC=90°,AE⊥BD于點E,∠DAC=∠DBC,求證:△ACD與△ABE互為“旋轉(zhuǎn)位似圖形”.
(3)拓展提高:
如圖3,△ABG為等邊三角形,點C為AG的中點,點F是AB邊上的一點,點D為CF延長線上的一點,點E在線段CF上,且△ABD與△ACE互為“旋轉(zhuǎn)位似圖形”.若AB=6,AD=4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與軸、軸分別交于、兩點,是以為圓心,1為半徑的圓上一動點,連接、,當(dāng)的面積最大時,點的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市特產(chǎn)大閘蟹,2016年的銷售額是億元,因生態(tài)優(yōu)質(zhì)美譽(yù)度高,銷售額逐年增加2018年的銷售額達(dá)億元,若2017、2018年每年銷售額增加的百分率都相同.
(1)求平均每年銷售額增加的百分率;
(2)該市這年大閘蟹的總銷售額是多少億元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,AB為的直徑,C為上一點,P是的中點,過點P作AC的垂線,交AC的延長線于點D.
(1)求證:DP是的切線;
(2)若AC=5,,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教育局為了了解初一學(xué)生參加社會實踐活動的天數(shù),隨機(jī)抽查本市部分初一學(xué)生參加社會實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖).請你根據(jù)圖中提供的信息,回答下列問題:
(1)這次共抽取 名學(xué)生進(jìn)行統(tǒng)計調(diào)查,補(bǔ)全條形圖;
(2) ,該扇形所對圓心角的度數(shù)為 ;
(3)如果該市有初一學(xué)生人,請你估計“活動時間不少于天”的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是的直徑,弦于G,過C點的切線與射線相交于點E,直線與交于點H,,.
(Ⅰ)求的半徑;
(Ⅱ)將射線繞D點逆時針旋轉(zhuǎn),得射線(如圖2),與交于點M,與及切線分別相交于點N,F,當(dāng)時,求切線的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com