關(guān)于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一個(gè)根是0,則a的值為()
A. 1 B. ﹣1 C. 1或﹣1 D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,小東用長為3.2m的竹竿做測量工具測量學(xué)校旗桿的高度,移動竹竿,使竹竿、旗桿頂端的影子恰好落在地面的同一點(diǎn).此時(shí),竹竿與這一點(diǎn)相距8m,與旗桿相距22m,則旗桿的高為()
A. 12m B. 10m C. 8m D. 7m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,O為原點(diǎn),直線l:x=1,點(diǎn)A(2,0),點(diǎn)E,點(diǎn)F,點(diǎn)M都在直線l上,且點(diǎn)E和點(diǎn)F關(guān)于點(diǎn)M對稱,直線EA與直線OF交于點(diǎn)P.
(Ⅰ)若點(diǎn)M的坐標(biāo)為(1,﹣1),
①當(dāng)點(diǎn)F的坐標(biāo)為(1,1)時(shí),如圖,求點(diǎn)P的坐標(biāo);
②當(dāng)點(diǎn)F為直線l上的動點(diǎn)時(shí),記點(diǎn)P(x,y),求y關(guān)于x的函數(shù)解析式.
(Ⅱ)若點(diǎn)M(1,m),點(diǎn)F(1,t),其中t≠0,過點(diǎn)P作PQ⊥l于點(diǎn)Q,當(dāng)OQ=PQ時(shí),試用含t的式子表示m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀例題:請參照例題的方法解方程x2﹣|x﹣1|﹣1=0
解方程:x2﹣|x|﹣2=0
解:(1)當(dāng)x≥0時(shí),得x2﹣x﹣2=0,
解得x1=2,x2=﹣1<0(舍去).
(2)當(dāng)x<0時(shí),得x2+x﹣2=0,
解得x1=1 (舍去),x2=﹣2.
∴原方程的解為x1=2,x2=﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線經(jīng)過A(﹣3,0),B(1,0),C(2,)三點(diǎn),其對稱軸交x軸于點(diǎn)H,一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點(diǎn)C,與拋物線交于另一點(diǎn)D(點(diǎn)D在點(diǎn)C的左邊),與拋物線的對稱軸交于點(diǎn)E.
(1)求拋物線的解析式;
(2)如圖1,當(dāng)S△EOC=S△EAB時(shí),求一次函數(shù)的解析式;
(3)如圖2,設(shè)∠CEH=α,∠EAH=β,當(dāng)α>β時(shí),直接寫出k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com