在平面直角坐標(biāo)系中,O為原點(diǎn),直線l:x=1,點(diǎn)A(2,0),點(diǎn)E,點(diǎn)F,點(diǎn)M都在直線l上,且點(diǎn)E和點(diǎn)F關(guān)于點(diǎn)M對(duì)稱,直線EA與直線OF交于點(diǎn)P.
(Ⅰ)若點(diǎn)M的坐標(biāo)為(1,﹣1),
①當(dāng)點(diǎn)F的坐標(biāo)為(1,1)時(shí),如圖,求點(diǎn)P的坐標(biāo);
②當(dāng)點(diǎn)F為直線l上的動(dòng)點(diǎn)時(shí),記點(diǎn)P(x,y),求y關(guān)于x的函數(shù)解析式.
(Ⅱ)若點(diǎn)M(1,m),點(diǎn)F(1,t),其中t≠0,過點(diǎn)P作PQ⊥l于點(diǎn)Q,當(dāng)OQ=PQ時(shí),試用含t的式子表示m.
解:(Ⅰ)①∵點(diǎn)O(0,0),F(xiàn)(1,1),
∴直線OF的解析式為y=x.
設(shè)直線EA的解析式為:y=kx+b(k≠0)、
∵點(diǎn)E和點(diǎn)F關(guān)于點(diǎn)M(1,﹣1)對(duì)稱,
∴E(1,﹣3).
又A(2,0),點(diǎn)E在直線EA上,
∴,
解得 ,
∴直線EA的解析式為:y=3x﹣6.
∵點(diǎn)P是直線OF與直線EA的交點(diǎn),則,
解得 ,
∴點(diǎn)P的坐標(biāo)是(3,3).
②由已知可設(shè)點(diǎn)F的坐標(biāo)是(1,t).
∴直線OF的解析式為y=tx.
設(shè)直線EA的解析式為y=cx+d(c、d是常數(shù),且c≠0).
由點(diǎn)E和點(diǎn)F關(guān)于點(diǎn)M(1,﹣1)對(duì)稱,得點(diǎn)E(1,﹣2﹣t).
又點(diǎn)A、E在直線EA上,
∴,
解得 ,
∴直線EA的解析式為:y=(2+t)x﹣2(2+t).
∵點(diǎn)P為直線OF與直線EA的交點(diǎn),
∴tx=(2+t)x﹣2(2+t),即t=x﹣2.
則有 y=tx=(x﹣2)x=x2﹣2x;
(Ⅱ)由(Ⅰ)可得,直線OF的解析式為y=tx.
直線EA的解析式為y=(t﹣2m)x﹣2(t﹣2m).
∵點(diǎn)P為直線OF與直線EA的交點(diǎn),
∴tx=(t﹣2m)x﹣2(t﹣2m),
化簡(jiǎn),得 x=2﹣.
有 y=tx=2t﹣.
∴點(diǎn)P的坐標(biāo)為(2﹣,2t﹣).
∵PQ⊥l于點(diǎn)Q,得點(diǎn)Q(1,2t﹣),
∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,
∵OQ=PQ,
∴1+t2(2﹣)2=(1﹣)2,
化簡(jiǎn),得 t(t﹣2m)(t2﹣2mt﹣1)=0.
又∵t≠0,
∴t﹣2m=0或t2﹣2mt﹣1=0,
解得 m=或m=.
則m=或m=即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在梯形ABCD中,AD∥BC,AD=3,CD=5,BC=10,梯形的高為4,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿線段BC以每秒2個(gè)單位長(zhǎng)度向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從點(diǎn)C出發(fā)沿線段CD以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)D運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒
(1)直接寫出梯形ABCD的中位線長(zhǎng);
(2)當(dāng)MN∥AB時(shí),求t的值;
(3)試探究:t為何值時(shí),使得MC=MN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
我們常用的數(shù)是十進(jìn)制數(shù),計(jì)算機(jī)程序使用的是二進(jìn)制數(shù)(只有數(shù)碼0和1),它們兩者之間可以互相換算,如將(101)2,(1011)2換算成十進(jìn)制數(shù)應(yīng)為:(101)2=1×22+0×21+1×20=4+0+1=5,
(1011)2=1×23+0×22+1×21+1×20=11.
按此方式,將二進(jìn)制(1001)2換算成十進(jìn)制數(shù)的結(jié)果是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知關(guān)于x的一元二次方程x2﹣mx﹣2=0.
(1)若﹣1是方程的一個(gè)根,求m的值和方程的另一個(gè)根.
(2)對(duì)于任意實(shí)數(shù)m,判斷方程根的情況,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
關(guān)于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一個(gè)根是0,則a的值為()
A. 1 B. ﹣1 C. 1或﹣1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
三角形的兩邊長(zhǎng)是3和4,第三邊長(zhǎng)是方程x2﹣12x+35=0的根,則三角形的周長(zhǎng)為()
A. 12 B. 13 C. 14 D. 12或14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知關(guān)于x的一元二次方程x2﹣4x+m=0.
(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(2)若方程兩實(shí)數(shù)根為x1,x2,且滿足5x1+2x2=2,求實(shí)數(shù)m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com