【題目】已知如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B、C分別為坐標(biāo)軸上上的三個(gè)點(diǎn),且OA=1,OB=3,OC=4,

(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;

(2)在平面直角坐標(biāo)系xOy中是否存在一點(diǎn)P,使得以點(diǎn)A、B、C、P為頂點(diǎn)的四邊形為菱形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

【答案】(1) (2)當(dāng)點(diǎn)P的坐標(biāo)為(5,3)時(shí),以點(diǎn)A、B、C、P為頂點(diǎn)的四邊形為菱形

【解析】

(1)設(shè)拋物線的解析式為y=ax2+bx+c,將A,B,C帶入構(gòu)造方程組,可求出a,b,c的值,得到拋物線的解析式;(2)在平面直角坐標(biāo)系xOy中存在一點(diǎn)P(5,3),使得以點(diǎn)A、B、C、P為頂點(diǎn)的四邊形為菱形.

(1)設(shè)拋物線的解析式為y=ax2+bx+c,

解得:

∴經(jīng)過A、B、C三點(diǎn)的拋物線的解析式為;

(2)在平面直角坐標(biāo)系xOy中存在一點(diǎn)P,使得以點(diǎn)A、B、C、P為頂點(diǎn)

的四邊形為菱形,理由為:

∵OB=3,OC=4,OA=1,

BC=AC=5,

當(dāng)BP平行且等于AC時(shí),四邊形ACBP為菱形,

BP=AC=5,且點(diǎn)P到x軸的距離等于OB,

∴點(diǎn)P的坐標(biāo)為(5,3),

當(dāng)點(diǎn)P在第二、三象限時(shí),以點(diǎn)A、B、C、P為頂點(diǎn)的四邊形只能是平行四邊形,不是菱形,

則當(dāng)點(diǎn)P的坐標(biāo)為(5,3)時(shí),以點(diǎn)A、B、C、P為頂點(diǎn)的四邊形為菱形;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓O的半徑為1,六邊形ABCDEF是圓O的內(nèi)接正六邊形,從A,B,CD,E,F六點(diǎn)中任意取兩點(diǎn),并連接成線段.

求線段長為2的概率;

求線段長為的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AN是M的直徑,NBx軸,AB交M于點(diǎn)C.

(1)若點(diǎn)A(0,6),N(0,2),ABN=30°,求點(diǎn)B的坐標(biāo);

(2)若D為線段NB的中點(diǎn),求證:直線CD是M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).的三個(gè)頂點(diǎn)、、都在格點(diǎn)上,將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)得到;

1)在正方形網(wǎng)格中,畫出;

2)分別畫出旋轉(zhuǎn)過程中,點(diǎn)和點(diǎn)經(jīng)過的路徑,并計(jì)算點(diǎn)所走過的路徑的長度;

3)計(jì)算線段在變換到的過程中掃過區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四張背面完全相同的紙牌A、B、C、D,其中正面分別畫有四個(gè)不同的幾何圖形(如圖),小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.

(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用A、B、C、D表示);

(2)求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對稱圖形又是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市預(yù)測某飲料有發(fā)展前途,用1600元購進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2.

(1)第一批飲料進(jìn)貨單價(jià)多少元?

(2)若二次購進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2OB,tanABC=2,點(diǎn)B的坐標(biāo)為(1,0).拋物線y=x2+bx+c經(jīng)過AB兩點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過點(diǎn)PPD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PE最大.

①求點(diǎn)P的坐標(biāo)和PE的最大值.

②在直線PD上是否存在點(diǎn)M,使點(diǎn)M在以AB為直徑的圓上;若存在,求出點(diǎn)M的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ABC90°

1)在BC邊上找一點(diǎn)P,作⊙PAC,AB邊都相切,與AC的切點(diǎn)為Q;(尺規(guī)作圖,保留作圖痕跡)

2)若AB4,AC6,求第(1)題中所作圓的半徑;

3)連接BQ,第(2)題中的條件不變,求cosCBQ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:線段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙兩同學(xué)的作業(yè):

甲:(1)以點(diǎn)C為圓心,AB長為半徑畫弧;

(2)以點(diǎn)A為圓心,BC長為半徑畫弧;

(3)兩弧在BC上方交于點(diǎn)D,連接AD,CD,四邊形ABCD即為所求(如圖1)

乙:(1)連接AC,作線段AC的垂直平分線,交AC于點(diǎn)M;

(2)連接BM并延長,在延長線上取一點(diǎn)D,使MD=MB,連接AD,CD,四邊形ABCD即為所求(如圖2).

對于兩人的作業(yè),下列說法正確的是( 。

A. 兩人都對 B. 兩人都不對 C. 甲對,乙不對 D. 甲不對,乙對

查看答案和解析>>

同步練習(xí)冊答案