【題目】已知直線軸交于點(diǎn)A.

1A點(diǎn)的坐標(biāo)為 .

2)直線交于點(diǎn)B,若以OA、B、C為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)C的坐標(biāo) .

【答案】1)(0,2);(2)(3,2)或(36)或(-3,-2).

【解析】

1,令x=0,則y=2,即可求解;

2)分AO是平行四邊形的一條邊、AO是平行四邊形的對(duì)角線,兩種情況分別求解即可.

解:(1,令x=0,則y=2

則點(diǎn)A02),

故答案為:(0,2);

2)聯(lián)立直線l1l2的表達(dá)式并解得:x=3,

故點(diǎn)B3,4),

①當(dāng)AO是平行四邊形的一條邊時(shí),

則點(diǎn)C3,2)或(36);

②當(dāng)AO是平行四邊形的對(duì)角線時(shí),

設(shè)點(diǎn)C的坐標(biāo)為(a,b),點(diǎn)B3,4),

BC的中點(diǎn)和AO的中點(diǎn)坐標(biāo),

由中點(diǎn)坐標(biāo)公式:a+3=0,b+4=2

解得:a=-3,b=-2

故點(diǎn)C-3,-2);

故點(diǎn)C坐標(biāo)為:(3,2)或(3,6)或(-3,-2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲乙兩人在一個(gè)200米的環(huán)形跑道上練習(xí)跑步,現(xiàn)在把跑道分成相等的4段,即兩條直道和兩條彎道的長(zhǎng)度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲乙兩人分別從A、C兩處同時(shí)相向出發(fā)(如圖),試解答下列問題:

1)幾秒后兩人首次相遇?請(qǐng)說(shuō)出此時(shí)他們?cè)谂艿郎系木唧w位置;

2)首次相遇后,又經(jīng)過(guò)多少時(shí)間他們?cè)俅蜗嘤觯?/span>

3)他們第100次相遇時(shí),在哪一段跑道上?(第(3)問直接寫出結(jié)論即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知函數(shù)的圖像與軸交于點(diǎn),一次函數(shù)的圖像分別與軸、軸交于點(diǎn),且與的圖像交于點(diǎn).

(1)的值;

(2),則的取值范圍是

(3)求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在平行四邊形ABCD中,EAD上一點(diǎn),且AB=AE,連接BEAC于點(diǎn)H,過(guò)點(diǎn)AAFBCF,交BE于點(diǎn)G.

(1)若∠D=50°,求∠EBC的度數(shù);

(2)ACCD,過(guò)點(diǎn)GGMBCAC于點(diǎn)M,求證:AH=MC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),CD平分∠ACB交⊙O于點(diǎn)D

1ADBD相等嗎?為什么?

2)若AB=10AC=6,求CD的長(zhǎng);

3)若P為⊙O上異于A、BC、D的點(diǎn),試探究PA、PD、PB之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只不透明的箱子里共有3個(gè)球,其中2個(gè)白球,1個(gè)紅球,它們除顏色外均相同.

(1)從箱子中隨機(jī)摸出一個(gè)球是白球的概率是

(2)從箱子中隨機(jī)摸出一個(gè)球,記錄下顏色后不將它放回箱子,攪勻后再摸出一個(gè)球,求兩次摸出的球都是白球的概率,并畫出樹狀圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,己知正方形ABCD的邊長(zhǎng)為4, P是對(duì)角線BD上一點(diǎn),PE⊥BC于點(diǎn)E, PF⊥CD于點(diǎn)F,連接AP, EF.給出下列結(jié)論:①PD=EC:②四邊形PECF的周長(zhǎng)為8;③△APD一定是等腰三角形:④AP=EF⑤EF的最小值為;⑥AP⊥EF.其中正確結(jié)論的序號(hào)為(

A. ①②④⑤⑥B. ①②④⑤

C. ②④⑤D. ②④⑤⑥

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.請(qǐng)根據(jù)你對(duì)這句話的理解,解決下面問題:若mnmn)是關(guān)于x的方程1﹣x﹣a)(x﹣b=0的兩根,且ab,則a、bm、n的大小關(guān)系是( ).

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市有著豐富的土地資源,適宜種植玉米,某企業(yè)已收購(gòu)玉米525噸,根據(jù)市場(chǎng)信息,將玉米直接銷售,每噸可獲利100元;如果對(duì)玉米進(jìn)行粗加工,每天可加工8噸,每噸可獲利1000元;如果對(duì)玉米進(jìn)行精加工,每天可加工05噸,每噸可獲利5000元.由于受條件限制,在同一天中只能采取一種加工方式,并且必須在30天內(nèi)將這批玉米全部銷售,為此,研究了兩種方案.

1)方案一:將玉米全部粗加工后銷售,則可獲利 元;

2)方案二:30天時(shí)間都進(jìn)行精加工,未來(lái)得及加工的玉米,在市場(chǎng)上直接銷售,則可獲利 元;

3)問是否存在第三種方案,將部分玉米精加工,其余玉米粗加工,并恰好在30天內(nèi)完成?若存在,請(qǐng)求銷售后所獲利潤(rùn):若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案