已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,-3)、B(3,2)兩點(diǎn),且與x軸相交于M、N兩點(diǎn),當(dāng)以線段MN為直徑的圓的面積最小時(shí),求M、N兩點(diǎn)的坐標(biāo)和四邊形AMBN的面積.
由拋物線經(jīng)過A(-2,-3)、B(3,2)兩點(diǎn)可得b=1-a,c=-(1+6a)
∴MN=丨x1-x2丨=|
b2-4ac
a
|=|±
25a2+2a+1
a2
|=
(
1
a
)2+
2
a
+25
=
(
1
a
+1)2+24

當(dāng)a=-1時(shí),MN最小=2
6

此時(shí),b=2,c=5,
∴函數(shù)的解析式為:y=-x2+2x+5.
∴M(1-
6
,0),N(1+
6
,0),
此時(shí),四邊形AMBN的面積S=
1
2
MN•(|yA|+|yB|)=
1
2
×2
6
×(3+2)=5
6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c當(dāng)x=-2時(shí)有最大值4,且二次函數(shù)圖象與直線y=x+1的一個(gè)交點(diǎn)為P(m,0),求:
(1)m的值;
(2)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,排球運(yùn)動(dòng)員甲站在點(diǎn)O處練習(xí)發(fā)球,球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m.若把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)是二次函數(shù)關(guān)系.以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系.
(1)在某一次發(fā)球時(shí),甲將球從O點(diǎn)正上方2m的A處發(fā)出,已知球的最大飛行高度為2.6m,此時(shí)距O點(diǎn)的水平距離為6m.
①求拋物線的解析式.
②球能否越過球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說明理由.
(2)若球的最大飛行高度時(shí)距O點(diǎn)的水平距離6m不變,要使球一定能越過球網(wǎng),又不出邊界,求二次函數(shù)中二次項(xiàng)系數(shù)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線C1的頂點(diǎn)坐標(biāo)是D(1,4),且經(jīng)過點(diǎn)C(2,3),又與x軸交于點(diǎn)A、E(點(diǎn)A在點(diǎn)E左邊),與y軸交于點(diǎn)B.
(1)拋物線C1的表達(dá)式是______;
(2)四邊形ABDE的面積等于______;
(3)問:△AOB與△DBE相似嗎?并說明你的理由;
(4)設(shè)拋物線C1的對(duì)稱軸與x軸交于點(diǎn)F.另一條拋物線C2經(jīng)過點(diǎn)E(C2與C1不重合),且頂點(diǎn)為M(a,b),對(duì)稱軸與x軸交于點(diǎn)G,并且以M、G、E為頂點(diǎn)的三角形與以點(diǎn)D、E、F為頂點(diǎn)的三角形全等,求a、b的值.(只需寫出結(jié)果,不必寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一家電腦公司推出一款新型電腦,投放市場(chǎng)以來,前兩個(gè)月的利潤(rùn)情況如圖所示,該圖可以近似地看作拋物線的一部分,其中第x月的利潤(rùn)為y萬元,往后y與x滿足的關(guān)系不變.請(qǐng)結(jié)合圖象解答下列問題:
(1)求拋物線對(duì)應(yīng)的二次函數(shù)解析式;
(2)該公司在經(jīng)營(yíng)此款電腦的過程中,第幾月的利潤(rùn)最大?最大利潤(rùn)是多少?
(3)公司打算,從月利潤(rùn)下降開始,每月對(duì)下月的銷售額進(jìn)行預(yù)測(cè),若下月與該月的利潤(rùn)差額超過10萬元,則下月就停止銷售該產(chǎn)品,請(qǐng)你預(yù)測(cè)該產(chǎn)品持續(xù)銷售的月數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)在足球比賽中,當(dāng)守門員遠(yuǎn)離球門時(shí),進(jìn)攻隊(duì)員常常使用“吊射”的戰(zhàn)術(shù)(把球高高地挑過守門員的頭頂射入球門).一位球員在離對(duì)方球門30米的M處起腳吊射,假如球飛行的路線是一條拋物線,在離球門14米時(shí),足球到達(dá)最大高度
32
3
米,如圖,以球門底部為坐標(biāo)原點(diǎn)建立坐標(biāo)系,球門PQ的高度為2.44米,試通過計(jì)算說明,球是否會(huì)進(jìn)入球門?
(2)在(1)中,若守門員站在距球門2米遠(yuǎn)處,而守門員跳起后最多能摸到2.75米高處,他能否在空中截住這次吊射?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

養(yǎng)雞專業(yè)戶小李要建一個(gè)露天養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻(墻足夠長(zhǎng)),其他邊用竹籬笆圍成,竹籬笆的長(zhǎng)為40m,讀九年級(jí)的兒子小軍為他設(shè)計(jì)了如下方案:如圖,把養(yǎng)雞場(chǎng)圍成等腰梯形ABCD,且∠ABC=120°.
(1)當(dāng)AB為何值時(shí),所圍的面積是132
3
m2

(2)當(dāng)AB為何值時(shí),所圍的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

煙花廠為成都春節(jié)特別設(shè)計(jì)制作一種新型禮炮,這種禮炮的升空高度h(m)與飛行時(shí)間t(s)的關(guān)系式是h=-
3
2
t2+12t+30
,若這種禮炮在點(diǎn)火升空到最高點(diǎn)引爆,則從點(diǎn)火升空到引爆需要的時(shí)間為(  )
A.3sB.4sC.5sD.6s

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷售情況.請(qǐng)根據(jù)小麗提供的信息:

(1)請(qǐng)解答小華提出的問題;
(2)能否獲得比800元更多的利潤(rùn)?若能,請(qǐng)舉例說明;若不能,試說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案