【題目】如圖,在中,度.以的三邊為邊分別向外作等邊三角形,,,若,的面積分別是8和3,則的面積是( )
A. B. C. D. 5
【答案】D
【解析】
先設(shè)AC=b,BC=a,AB=c,根據(jù)勾股定理有c2+b2=a2,再根據(jù)等式性質(zhì)可得c2+b2=a2,再根據(jù)等邊三角形的性質(zhì)以及特殊三角函數(shù)值,易求得S3=×sin60°aa=a2,同理可求S2=b2,S1=c2,從而可得S1+S2=S3,易求S1.
解:如圖,設(shè)等邊三角形△A'BC,△AB'C,△ABC'的面積分別是S3,S2,S1,
設(shè)AC=b,BC=a,AB=c,
∵△ABC是直角三角形,且∠BAC=90度,
∴c2+b2=a2,
∴c2+b2=a2,
又∵S3=×sin60°aa=a2,同理可求S2=b2,S1=c2,
∴S1+S2=S3,
∵S3=8,S2=3,
∴S1=S3S2=83=5,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 y1 與 y2 相交于點C , y1 與 x 軸交于點 D ,與 y 軸交于點0,1, y2 與 x 軸 交于點 B3,0,與 y 軸交于點 A ,下列說法正確的個數(shù)有( )
①y1的 解 析 式 為;② OA OB ;③;④;⑤ AOB BCD .
A.2 個B.3個C.4 個D.5 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線 交x軸于A點,交y軸于B點,點C是線段AB的中點,連接OC,然后將直線OC繞點C逆時針旋轉(zhuǎn)30°交x軸于點D,再過D點作直線DC1∥OC,交AB與點C1,然后過C1點繼續(xù)作直線D1C1∥DC,交x軸于點D1,并不斷重復(fù)以上步驟,記△OCD的面積為S1,△DC1D1的面積為S2,依此類推,后面的三角形面積分別是S3,S4…,那么S1=_____,若S=S1+S2+S3+…+Sn,當(dāng)n無限大時,S的值無限接近于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點為直線上一點,過點作射線,使,將一直角三角板的直角頂點放在點處(),一邊在射線上,另一邊在直線的下方.
(1)將圖1中的三角板繞點逆時針旋轉(zhuǎn)至圖2,使一邊在的內(nèi)部,且恰好平分,求的度數(shù);
(2)將圖1中的三角板繞點以每秒5的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第秒時,直線恰好平分銳角,求的值;
將圖1中的三角板繞點逆時針旋轉(zhuǎn)至圖3,使一邊在的內(nèi)部,請?zhí)骄?/span>的值./span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某日的錢塘江觀潮信息如圖:
按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離s(千米)與時間t(分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時甲地‘交叉潮’的潮頭離乙地12千米”記為點A(0,12),點B坐標(biāo)為(m,0),曲線BC可用二次函數(shù)s=t2+bt+c(b,c是常數(shù))刻畫.
(1)求m的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時,小紅騎單車從乙地出發(fā),沿江邊公路以0.48千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為0.48千米/分,小紅逐漸落后.問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度v=v0+(t﹣30),v0是加速前的速度).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,在直角梯形ABCD中,∠BAD=90°,E是直線AB上一點,過E作直線l∥BC,交直線CD于點F.將直線l向右平移,設(shè)平移距離BE為t(t≥0),直角梯形ABCD被直線l掃過的面積(圖中陰影部分)為S,S關(guān)于t的函數(shù)圖象如圖②所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點橫坐標(biāo)為4.
信息讀取
(1)梯形上底的長AB= ;
(2)直角梯形ABCD的面積= ;
圖象理解
(3)寫出圖②中射線NQ表示的實際意義;
(4)當(dāng)2<t<4時,求S關(guān)于t的函數(shù)關(guān)系式;
問題解決
(5)當(dāng)t為何值時,直線l將直角梯形ABCD分成的兩部分面積之比為1:3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2016年泉州市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是( )
A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=2x+b的圖象與反比例函數(shù)(x>0)的圖象交于點A(m,2),與坐標(biāo)軸分別交于B和C(0,-2)兩點.
(1)求反比例函數(shù)的表達(dá)式;
(2)若P是y軸上一動點,當(dāng)PA+PB的值最小時,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com