閱讀理解
如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合,無論折疊多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點B與點C重合;情形二:如圖3,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時點B1與點C重合.
探究發(fā)現(xiàn)
(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC是不是△ABC的好角?______(填“是”或“不是”).
(2)小麗經(jīng)過三次折疊發(fā)現(xiàn)了∠BAC是△ABC的好角,請?zhí)骄俊螧與∠C(不妨設∠B>∠C)之間的等量關系.根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設∠B>∠C)之間的等量關系為______.
應用提升
(3)小麗找到一個三角形,三個角分別為15°、60°、105°,發(fā)現(xiàn)60°和105°的兩個角都是此三角形的好角.
請你完成,如果一個三角形的最小角是4°,試求出三角形另外兩個角的度數(shù),使該三角形的三個角均是此三角形的好角.

【答案】分析:(1)在小麗展示的情形二中,如圖3,根據(jù)根據(jù)三角形的外角定理、折疊的性質(zhì)推知∠B=2∠C;
(2)根據(jù)折疊的性質(zhì)、根據(jù)三角形的外角定理知∠A1A2B2=∠C+∠A2B2C=2∠C;
根據(jù)四邊形的外角定理知∠BAC+2∠B-2C=180°①,根據(jù)三角形ABC的內(nèi)角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C;
利用數(shù)學歸納法,根據(jù)小麗展示的三種情形得出結(jié)論:∠B=n∠C;
(3)利用(2)的結(jié)論知∠B=n∠C,∠BAC是△ABC的好角,∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角;然后三角形內(nèi)角和定理可以求得另外兩個角的度數(shù)可以是4、172;8、168;16、160;44、132;88°、88°.
解答:解:(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC是△ABC的好角;
理由如下:小麗展示的情形二中,如圖3,
∵沿∠BAC的平分線AB1折疊,
∴∠B=∠AA1B1;
又∵將余下部分沿∠B1A1C的平分線A1B2折疊,此時點B1與點C重合,
∴∠A1B1C=∠C;
∵∠AA1B1=∠C+∠A1B1C(外角定理),
∴∠B=2∠C,∠BAC是△ABC的好角.
故答案是:是;

(2)∠B=3∠C;如圖所示,在△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復部分,將余下部分沿∠B2A2C的平分線A2B3折疊,點B2與點C重合,則∠BAC是△ABC的好角.
證明如下:∵根據(jù)折疊的性質(zhì)知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2,
∴根據(jù)三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;
∵根據(jù)四邊形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1 B1C=∠BAC+2∠B-2∠C=180°,
根據(jù)三角形ABC的內(nèi)角和定理知,∠BAC+∠B+∠C=180°,
∴∠B=3∠C;
由小麗展示的情形一知,當∠B=∠C時,∠BAC是△ABC的好角;
由小麗展示的情形二知,當∠B=2∠C時,∠BAC是△ABC的好角;
由小麗展示的情形三知,當∠B=3∠C時,∠BAC是△ABC的好角;
故若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設∠B>∠C)之間的等量關系為∠B=n∠C;

(3)由(2)知設∠A=4°,∵∠C是好角,∴∠B=4n°;
∵∠A是好角,∴∠C=m∠B=4mn°,其中m、n為正整數(shù)得4+4n+4mn=180
∴如果一個三角形的最小角是4°,三角形另外兩個角的度數(shù)是4、172;8、168;16、160;44、132;88°、88°.
點評:本題考查了翻折變換(折疊問題).解答此題時,充分利用了三角形內(nèi)角和定理、三角形外角定理以及折疊的性質(zhì).難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•淮安)閱讀理解
如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合,無論折疊多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點B與點C重合;情形二:如圖3,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時點B1與點C重合.
探究發(fā)現(xiàn)
(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC是不是△ABC的好角?
(填“是”或“不是”).
(2)小麗經(jīng)過三次折疊發(fā)現(xiàn)了∠BAC是△ABC的好角,請?zhí)骄俊螧與∠C(不妨設∠B>∠C)之間的等量關系.根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設∠B>∠C)之間的等量關系為
∠B=n∠C
∠B=n∠C

應用提升
(3)小麗找到一個三角形,三個角分別為15°、60°、105°,發(fā)現(xiàn)60°和105°的兩個角都是此三角形的好角.
請你完成,如果一個三角形的最小角是4°,試求出三角形另外兩個角的度數(shù),使該三角形的三個角均是此三角形的好角.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆浙江杭州余杭星橋中學九年級下學期階段性測試數(shù)學試卷(帶解析) 題型:解答題

閱讀理解
如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重疊部分;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合.無論折疊多少次,只要最后一次恰好重合,我們就稱∠BAC是△ABC的好角.

小麗展示了確定∠BAC是△ABC的好角的兩種情形.
情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點B與點C重合;

情形二:如圖3,沿 △ABC的∠BAC的平分線AB1折疊,剪掉重疊部分;
將余下的部分沿∠B1A1C的平分線 A1B2折疊,此時點B1與點C重合.
 
探究發(fā)現(xiàn)
(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC  (填“是”或“不是”)△ABC的好角;
(2)若經(jīng)過三次折疊發(fā)現(xiàn)∠BAC是△ABC的好角,請?zhí)骄俊螧與∠C之間的等量關系(不妨設∠B>∠C).
根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C之問的等量關系為      .(不妨設∠B>∠C)
應用提升:
(3)小麗找到一個三角形,三個角分別為15º,60º,l05º,發(fā)現(xiàn)60º和l05º的兩個角都是此三角形的好角.
請你完成,如果一個三角形的最小角是4º,試求出三角形另外兩個角的度數(shù),使該三角形的三個角均是此三角形的好角.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙江杭州余杭九年級下學期階段性測試數(shù)學試卷(解析版) 題型:解答題

閱讀理解

如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重疊部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重疊部分;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合.無論折疊多少次,只要最后一次恰好重合,我們就稱∠BAC是△ABC的好角.

小麗展示了確定∠BAC是△ABC的好角的兩種情形.

情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點B與點C重合;

情形二:如圖3,沿 △ABC的∠BAC的平分線AB1折疊,剪掉重疊部分;

將余下的部分沿∠B1A1C的平分線 A1B2折疊,此時點B1與點C重合.

 

探究發(fā)現(xiàn)

(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC  (填“是”或“不是”)△ABC的好角;

(2)若經(jīng)過三次折疊發(fā)現(xiàn)∠BAC是△ABC的好角,請?zhí)骄俊螧與∠C之間的等量關系(不妨設∠B>∠C).

根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C之問的等量關系為      .(不妨設∠B>∠C)

應用提升:

(3)小麗找到一個三角形,三個角分別為15º,60º,l05º,發(fā)現(xiàn)60º和l05º的兩個角都是此三角形的好角.

請你完成,如果一個三角形的最小角是4º,試求出三角形另外兩個角的度數(shù),使該三角形的三個角均是此三角形的好角.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013年浙江省杭州市中考數(shù)學預測試卷(解析版) 題型:解答題

閱讀理解
如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合,無論折疊多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點B與點C重合;情形二:如圖3,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時點B1與點C重合.
探究發(fā)現(xiàn)
(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC是不是△ABC的好角?______(填“是”或“不是”).
(2)小麗經(jīng)過三次折疊發(fā)現(xiàn)了∠BAC是△ABC的好角,請?zhí)骄俊螧與∠C(不妨設∠B>∠C)之間的等量關系.根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設∠B>∠C)之間的等量關系為______.
應用提升
(3)小麗找到一個三角形,三個角分別為15°、60°、105°,發(fā)現(xiàn)60°和105°的兩個角都是此三角形的好角.
請你完成,如果一個三角形的最小角是4°,試求出三角形另外兩個角的度數(shù),使該三角形的三個角均是此三角形的好角.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年安徽省中考數(shù)學模擬試卷(十八)(解析版) 題型:解答題

閱讀理解
如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合,無論折疊多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點B與點C重合;情形二:如圖3,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時點B1與點C重合.
探究發(fā)現(xiàn)
(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC是不是△ABC的好角?______(填“是”或“不是”).
(2)小麗經(jīng)過三次折疊發(fā)現(xiàn)了∠BAC是△ABC的好角,請?zhí)骄俊螧與∠C(不妨設∠B>∠C)之間的等量關系.根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設∠B>∠C)之間的等量關系為______.
應用提升
(3)小麗找到一個三角形,三個角分別為15°、60°、105°,發(fā)現(xiàn)60°和105°的兩個角都是此三角形的好角.
請你完成,如果一個三角形的最小角是4°,試求出三角形另外兩個角的度數(shù),使該三角形的三個角均是此三角形的好角.

查看答案和解析>>

同步練習冊答案