如圖,已知菱形ABCD的邊長為2,∠BAD=60°,若DE⊥AB,垂足為點(diǎn)E,則DE的長為   
【答案】分析:由已知的DE⊥AB,根據(jù)垂直的定義得到∠AED=90°,即三角形ADE為直角三角形,在此直角三角形中,根據(jù)銳角三角函數(shù)的定義得到sin∠BAD=,將∠BAD的度數(shù)以及AD的值代入,利用特殊角的三角函數(shù)值,化簡即可求出DE.
解答:解:∵DE⊥AB,
∴∠AED=90°,
在Rt△ADE中,∠BAD=60°,AD=2,
∴sin60°=,
則DE=AD•sin60°=2×=
故答案為:
點(diǎn)評(píng):此題考查了菱形的性質(zhì),直角三角形的性質(zhì),以及銳角三角函數(shù),銳角三角函數(shù)很好的建立了三角形的邊角關(guān)系,要求學(xué)生找出已知與未知的聯(lián)系,選擇合適的三角函數(shù)來解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知菱形ABCD的邊長為1.5cm,B,C兩點(diǎn)在扇形AEF的
EF
上,求
BC
的長度及扇形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知菱形ABCD的周長為16cm,∠ABC=60°,對(duì)角線AC和BD相交于點(diǎn)O,求AC和BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,已知菱形ADEF和等腰三角形ABC,AB=AC,∠BAC=54°,點(diǎn)B、C分別在DE、EF.(B、C分別不與E、F重合)
(1)如圖1,當(dāng)AE平分∠BAC時(shí),
①求證:BD=CF;
②當(dāng)AD=AB時(shí),求∠ABD的度數(shù);
(2)如圖2,當(dāng)AE不平分∠BAC時(shí),若△ADB是一個(gè)等腰三角形,求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知菱形ABCD邊長為6
3
,∠ABC=120°,點(diǎn)P在線段BC延長線上,半徑為r1的圓O1與DC、CP、DP分別相切于點(diǎn)H、F、N,半徑為r2的圓O2與PD延長線、CB延長線和BD分別相切于點(diǎn)M、E、G.
(1)求菱形的面積;
(2)求證:EF=MN;
(3)求r1+r2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知菱形ABCD為2cm.B、C兩點(diǎn)在以點(diǎn)A為圓心的
EF
上,求
BC
的長度及扇形ABC的面積.(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊(cè)答案