如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個交點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點(diǎn)是(﹣1,0);⑤當(dāng)1<x<4時,有y2<y1,
其中正確的是( 。
| A. | ①②③ | B. | ①③④ | C. | ①③⑤ | D. | ②④⑤ |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
某家電銷售商城電冰箱的銷售價為每臺2100元,空調(diào)的銷售價為每臺1750元,每臺電冰箱的進(jìn)價比每臺空調(diào)的進(jìn)價多400元,商城用80000元購進(jìn)電冰箱的數(shù)量與用64000元購進(jìn)空調(diào)的數(shù)量相等.
(1)求每臺電冰箱與空調(diào)的進(jìn)價分別是多少?
(2)現(xiàn)在商城準(zhǔn)備一次購進(jìn)這兩種家電共100臺,設(shè)購進(jìn)電冰箱x臺,這100臺家電的銷售總利潤為y元,要求購進(jìn)空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于13000元,請分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤;
(3)實際進(jìn)貨時,廠家對電冰箱出廠價下調(diào)k(0<k<100)元,若商店保持這兩種家電的售價不變,請你根據(jù)以上信息及(2)問中條件,設(shè)計出使這100臺家電銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論:
①二次三項式ax2+bx+c的最大值為4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的兩根之和為﹣1;
④使y≤3成立的x的取值范圍是x≥0.
其中正確的個數(shù)有( )
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,已知直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將直線在x軸下方的部分沿x軸翻折,得到一個新函數(shù)的圖象(圖中的“V形折線”).
(1)類比研究函數(shù)圖象的方法,請列舉新函數(shù)的兩條性質(zhì),并求新函數(shù)的解析式;
(2)如圖2,雙曲線y=與新函數(shù)的圖象交于點(diǎn)C(1,a),點(diǎn)D是線段AC上一動點(diǎn)(不包括端點(diǎn)),過點(diǎn)D作x軸的平行線,與新函數(shù)圖象交于另一點(diǎn)E,與雙曲線交于點(diǎn)P.
①試求△PAD的面積的最大值;
②探索:在點(diǎn)D運(yùn)動的過程中,四邊形PAEC能否為平行四邊形?若能,求出此時點(diǎn)D的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,菱形ABCD中,AB=2,∠A=120º,點(diǎn)P、Q、K分別為線段BC、CD、BD上任意一點(diǎn),則PK+QK的最小值為………………………………………………( )
A.1 B. C.2 D.+1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com