【題目】將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時針旋轉45°得圖②,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
【答案】(1)證明見解析;(2)CQ=
【解析】(1)利用△A1CB1≌△ACB得到CA1=CA,再根據(jù)旋轉的性質得∠B1CB=∠A1CA=45°,則∠BCA1=45°,于是根據(jù)“ASA”判斷△CQA1≌△CP1A,所以CP1=CQ;
(2)過點P1作P1P⊥AC于點P,如圖②,先在Rt△AP1P中根據(jù)含30度的直角三角形三邊的關系得到P1P=AP1=×2=1,然后在Rt△CP1P中利用等腰直角三角形的性質得CP=P1P=1,CP1=PP1=,由(1)得CQ=CP1=.
(1)∵△A1CB1≌△ACB,∴CA1=CA.
∵圖①中的△A1B1C順時針旋轉45°得圖②,∴∠B1CB=∠A1CA=45°,∴∠BCA1=45°.
在△CQA1和△CP1A中,∵,∴△CQA1≌△CP1A,∴CP1=CQ;
(2)過點P1作P1P⊥AC于點P,如圖②.在Rt△AP1P中,∵∠A=30°,∴P1P=AP1=×2=1.在Rt△CP1P中,∵∠P1CP=45°,∴CP=P1P=1,∴CP1=PP1=,∴CQ=CP1=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)(為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點.
(1)求一次函數(shù)的表達式;
(2)若將直線向下平移個單位長度后與反比例函數(shù)的圖像有且只有一個公共點,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=100°,∠BCD=70°,點M,N分別在AB,BC上,將△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校數(shù)學興趣小組開展了一次課外活動,過程如下:如圖①,正方形ABCD中,AB=4,將三角板放在正方形ABCD上,使三角板的直角頂點與D點重合.三角板的一邊交AB于點P,另一邊交BC的延長線于點Q.
(1)求證:AP=CQ;
(2)如圖②,小明在圖1的基礎上作∠PDQ的平分線DE交BC于點E,連接PE,他發(fā)現(xiàn)PE和QE存在一定的數(shù)量關系,請猜測他的結論并予以證明;
(3)在(2)的條件下,若AP=1,求PE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中小方格邊長為1,請你根據(jù)所學的知識解決下面問題.
(1)求網(wǎng)格圖中△ABC的面積.
(2)判斷△ABC是什么形狀?并所明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm,射線AG∥BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,點F從點B出發(fā)沿射線BC以2cm/s的速度運動.如果點E、F同時出發(fā),設運動時間為t(s)當t=______s時,以A、C、E、F為頂點四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)為了提高工人勞動的積極性,決定對工人的月工資進行調(diào)整.已知該企業(yè)有 n 名工人,調(diào)整后的月工資 y(元)與調(diào)整前的月工資 x(元)滿足一次函數(shù)關系,如下表:
(1)求 y 與 x 的函數(shù)關系式;
(2)若某名工人調(diào)整前月工資是4800元,那么調(diào)整后這名工人月工資增加了多少元?
(3)這 名工人調(diào)整前、后的平均月工資分別為,,猜想與的關系式,并寫出推導過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,不正確的是( )
A. 直角邊長分別是6、4和4.5、3的兩個直角三角形相似 B. 底角為40°的兩個等腰三角形相似
C. 一個銳角為30°的兩個直角三角形相似 D. 有個角為30°的兩個等腰三角形相似
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com