如圖1,梯形中,∥,,.一個動點從點出發(fā),以每秒個單位長度的速度沿線段方向運動,過點作,交折線段于點,以為邊向右作正方形,點在射線上,當(dāng)點到達點時,運動結(jié)束.設(shè)點的運動時間為秒().
(1)當(dāng)正方形的邊恰好經(jīng)過點時,求運動時間的值;
(2)在整個運動過程中,設(shè)正方形與△的重合部分面積為,請直接寫出與之間的函數(shù)關(guān)系式和相應(yīng)的自變量的取值范圍;
(3)如圖2,當(dāng)點在線段上運動時,線段與對角線交于點,將△沿翻折,得到△,連接.是否存在這樣的,使△是等腰三角形?若存在,求出對應(yīng)的的值;若不存在,請說明理由.
(1)當(dāng)t=4時,正方形PQMN的邊MN恰好過點D
(2)
(3)當(dāng)時,∆PEF是等腰三角形
解析試題分析:(1)作AG⊥BC,DH⊥BC,垂足分別為G、H,可以得出四邊形AGHD為矩形,根據(jù)矩形的性質(zhì)及相關(guān)條件可以得出△ABG≌△DCH,可以求出BG=CH的值,再由勾股定理就可以求出AG=DH的值,就可以求出BP的值,即可以求出結(jié)論t的值;
(2)運用求分段函數(shù)的方法,分四種情況,當(dāng)0<t≤3,當(dāng)3<t≤4,4<t≤7,7<t≤8時,運用梯形的面積公式和三角形的面積公式就可以求出S的值;
(3)先由條件可以求出EF=EQ=PQ-EP=4-t,分為三種情況:EF=EP時可以求出t值,當(dāng)FE=FP時,作FR⊥EP,垂足為R,可以求出t值,當(dāng)PE=PF時,作PS⊥EF,垂足為S,可以求出t值.
試題解析:(1)如圖2,作AG⊥BC于G,DH⊥BC于H,則四邊形AGHD是矩形。
∵梯形ABCD中,AB=AD=DC=5,
∴∆ABG≌∆DCH,
∴,
∴當(dāng)正方形PQMN的邊MN恰好過點D時,點M與點D重合,此時MQ=4,
,
∴當(dāng)t=4時,正方形PQMN的邊MN恰好過點D。
(2)
如圖1,當(dāng)0<t≤3時,BP=t,∵
∴,
如圖3,當(dāng)3<t≤4時,BP="t,"
∴
如圖4,當(dāng)4<t≤7時,BP="t,"
∴
如圖5,當(dāng)7<t≤8時,BP="t,"
∴
∴
(3)∵,
∴
∴
由(1)可知則
如圖6,當(dāng)EF=EP時,
∴
如圖7,當(dāng)FE=FP時,作FR⊥EP于R,∴
∴
∴
如圖8,當(dāng)PE=PF時,作PS⊥EF于S,∴
∴
∴
∴當(dāng)時,∆PEF是等腰三角形。
考點:相似形綜合題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
(1)如圖1,Rt△ABC中,∠B=90°,AB=2BC,現(xiàn)以C為圓心、CB長為半徑畫弧交邊AC于D,再以A為圓心、AD為半徑畫弧交邊AB于E.求證:.(這個比值
叫做AE與AB的黃金比.)
(2)如果一等腰三角形的底邊與腰的比等于黃金比,那么這個等腰三角形就叫做黃金三角形.請你以圖2中的線段AB為腰,用直尺和圓規(guī),作一個黃金三角形ABC.
(注:直尺沒有刻度!作圖不要求寫作法,但要求保留作圖痕跡,并對作圖中涉及到的點用字母進行標(biāo)注)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點位置,AE=60cm.如果小丁瞄準(zhǔn)BC邊上的點F將球打過去,經(jīng)過反彈后,球剛好彈到D點位置.
(1)求證:△BEF∽△CDF;
(2)求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在數(shù)學(xué)課上,同學(xué)們研究圖形的拼接問題.
比如:兩個全等的等腰直角三角形紙片既能拼成一個大的等腰直角三角形(如圖1),也能拼成一個正方形(如圖2).
(1)現(xiàn)有兩個相似的直角三角形紙片,各有一個角為,恰好可以拼成另一個含有30°角的直角三角形,那么在原來的兩個三角形紙片中,較大的與較小的紙片的相似比為________,請畫出拼接的示意圖;
(2)現(xiàn)有一個矩形恰好由三個各有一個角為的直角三角形紙片拼成,請你畫出兩種不同拼法的示意圖.在拼成這個矩形的三角形中,若每種拼法中最小的三角形的斜邊長為,請直接寫出每種拼法中最大三角形的斜邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖,在△ABC中,點D是BC中點,點E是AC中點,且AD⊥BC,BE⊥AC, BE,AD相交于點G,過點B作BF∥AC交AD的延長線于點F, DF="6."
(1) 求AE的長;
(2) 求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
閱讀下面的材料:
小明遇到一個問題:如圖(1),在□ABCD中,點E是邊BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G.如果,求的值.
他的做法是:過點E作EH∥AB交BG于點H,則可以得到△BAF∽△HEF.
請你回答:(1)AB和EH的數(shù)量關(guān)系為 ,CG和EH的數(shù)量關(guān)系為 ,的值為 .
(2)如圖(2),在原題的其他條件不變的情況下,如果,那么的值為 (用含a的代數(shù)式表示).
(3)請你參考小明的方法繼續(xù)探究:如圖(3),在四邊形ABCD中,DC∥AB,點E是BC延長線上一點,AE和BD相交于點F. 如果,那么的值為 (用含m,n的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com