【題目】如圖,在每個小正方形的邊長為1的方格紙中,把△ABC向右平移5個方格得△A1B1C1,再繞點B1順時針方向旋轉(zhuǎn)90°得△A2B1C2.

(1)畫出平移和旋轉(zhuǎn)后的圖形,并標明對應(yīng)字母.

(2)求頂點A從開始到結(jié)束所經(jīng)過的路徑的長.(結(jié)果用含有π的式子表示)

【答案】(1)作圖見解析;(2)5+

【解析】

(1)根據(jù)網(wǎng)格特點和平移的性質(zhì)畫出點A、B、C的對應(yīng)點A1、B1、C1,則可得到△A1B1C1;利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出點A、B、C的對應(yīng)點A2、B1、C2,則可得到△A2B1C2;

(2)先求出A到A1的距離,再求出點A1在旋轉(zhuǎn)過程中走過的路徑是以B1點為圓心,BA1為半徑,圓心角為90度的弧長,于是根據(jù)弧長公式可求解.

(1)如圖,△A1B1C1和△A2B1C2為所作;

(2)AB=,

所以點A1在旋轉(zhuǎn)過程中走過的路徑長=

所以點A從開始到結(jié)束所經(jīng)過的路徑的長為5+

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】向陽中學(xué)數(shù)學(xué)興趣小組對關(guān)于x的方程(m+1+m2x1=0提出了下列問題:

1)是否存在m的值,使方程為一元二次方程?若存在,求出m的值,并解此方程;

2)是否存在m的值,使方程為一元一次方程?若存在,求出m的值,并解此方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=3,連接DE

1DE的長為   

2)動點P從點B出發(fā),以每秒1個單位的速度沿BCCDDA向終點A運動,設(shè)點P運動的時間為t秒,求當t為何值時,△ABP和△DCE全等?

3)若動點P從點B出發(fā),以每秒1個單位的速度僅沿著BE向終點E運動,連接DP.設(shè)點P運動的時間為t秒,是否存在t,使△PDE為等腰三角形?若存在,請直接寫出t的值;否則,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩種糖果,原價分別為每千克a元和b元.根據(jù)調(diào)查,將兩種糖果按甲種糖果x千克與乙種糖果y千克的比例混合,取得了較好的銷售效果.現(xiàn)在糖果價格有了調(diào)整:甲種糖果單價下降15%,乙種糖果單價上漲20%,但按原比例混合的糖果單價恰好不變,則等于( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為等邊ABC中邊BC的中點,在邊DA的延長線上取一點E,以CE為邊、在CE的左下方作等邊CEF,連結(jié)AF.若AB4AF,則CF的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、C是直線l上的三個點,∠DAB=∠DBE=∠ECBa,且BDBE

1)求證:ACAD+CE;

2)若a120°,點F在直線l的上方,BEF為等邊三角形,補全圖形,請判斷ACF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中的圖象(折線ABCDE)描述了一汽車在某一直道上的行駛過程中,汽車離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系.根據(jù)圖中提供的信息,給出下列說法:

①汽車共行駛了120千米;

②汽車在行駛途中停留了0.5小時;

③汽車在整個行駛過程中的平均速度為千米/時;

④汽車自出發(fā)后3小時至4.5小時之間行駛的速度在逐漸減少.

其中正確的說法有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x2+bx+c的圖像與x 軸交于A、B兩點,與y軸交于點C,OB=OC.點D在函數(shù)圖像上,CD//x軸,且CD=2,直線l 是拋物線的對稱軸,E是拋物線的頂點.

(1)求b、c 的值;

(2)如圖,連接BE,線段OC 上的點F 關(guān)于直線l 的對稱點F 恰好在線段BE上,求點F的坐標;

(3)如圖,動點P在線段OB上,過點P x 軸的垂線分別與BC交于點M,與拋物線交于點N.試問:拋物線上是否存在點Q,使得△PQN△APM的面積相等,且線段NQ的長度最?如果存在,求出點Q的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA=2,以點A為圓心,1為半徑畫⊙AOA的延長線交于點C,過點AOA的垂線,垂線與⊙A的一個交點為B,連接BC

1)線段BC的長等于 ;

2)請在圖中按下列要求逐一操作,并回答問題:

①以點 為圓心,以線段 的長為半徑畫弧,與射線BA交于點D,使線段OD的長等于

②連OD,在OD上畫出點P,使OP得長等于,請寫出畫法,并說明理由.

查看答案和解析>>

同步練習冊答案