【題目】騰飛中學(xué)在教學(xué)樓前新建了一座騰飛雕塑(如圖①).為了測量雕塑的高度,小明利用三角板測得雕塑頂端A點的仰角為30°,底部B點的俯角為45°,小華在五樓找到一點D,利用三角板測得A點的俯角為60°(如圖②).若已知CD10米,請求出雕塑AB的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù)=1.73).

【答案】雕塑AB的高度約為6.8米.

【解析】試題分析首先證明△ADC是直角三角形,求出AC.在RtACE,求出AE.在RtBCE,求出BE,即可解決問題.

試題解析過點CCEABE∵∠ADC=90°﹣60°=30°,ACD=90°﹣30°=60°,∴∠CAD=90°.CD=10,AC=CD=5

RtACE中,∵∠AEC=90°,ACE=30°,AE=AC=CE=ACcosACE=5cos30°=

RtBCE中,∵∠BCE=45°,BE=CE=,AB=AE+BE=+=+16.8(米).

雕塑AB的高度約為6.8米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點,的坐標(biāo)分別為,,現(xiàn)同時將點,分別向上平移2個單位,再向右平移1個單位,分別得到點的對應(yīng)點,,連接,,

(1)求點的坐標(biāo)及四邊形的面積

(2)軸上是否存在一點,連接,使,若存在這樣一點,求出點的坐標(biāo),若不存在,試說明理由.

(3)是線段上的一個動點,連接,當(dāng)點上移動時(不與重合)給出下列結(jié)論:

的值不變,② 的值不變,其中有且只有一個是正確的,請你找出這個結(jié)論并求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為進一步發(fā)展基礎(chǔ)教育,自2014年以來,某縣加大了教育經(jīng)費的投入,2014年該縣投入教育經(jīng)費6000萬元。2016年投入教育經(jīng)費8640萬元。假設(shè)該縣這兩年投入教育經(jīng)費的年平均增長率相同。

1求這兩年該縣投入教育經(jīng)費的年平均增長率;

2若該縣教育經(jīng)費的投入還將保持相同的年平均增長率,請你預(yù)算2017年該縣投入教育經(jīng)費多少萬元。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將圖1中的正方形剪開得到圖2,則圖2中共有4個正方形;將圖2中的一個正方形剪開得到圖3,圖3中共有7個正方形;將圖3中4個較小的正方形中的一個剪開得到圖4,則圖4中共有10個正方形,照這個規(guī)律剪下去:

(1)根據(jù)圖中的規(guī)律補全表:

 圖形標(biāo)號

1

2

3

4

5

6

正方形個數(shù)

1

4

7

10

_____

_____

(2)第n個圖形中有多少個正方形?

(3)當(dāng)n=673時,圖形中有多少個正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家、食堂、圖書館在同一條直線上,小明從家去食堂吃早餐,接著去圖書館讀報,然后回家,如圖反映了這個過程中小明離家的距離ykm)與時間x(min)之間的對應(yīng)關(guān)系.根據(jù)圖象,下列說法中正確的是(

A. 小明吃早餐用了17min

B. 食堂到圖書館的距離為0.8km

C. 小明讀報用了28min

D. 小明從圖書館回家的速度為0.8km/min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點M,N,P在同一條直線上,線段MN6,且線段PN2

1)若點P在線段MN上,求MP的長;

2)若點P在射線MN上,點AMP的中點,求線段AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列生活現(xiàn)象:

①用兩個釘子就可以把木條固定在墻上;

②從地道地架設(shè)電線,總是盡可能沿著線段架設(shè);

③植樹時,只要確定兩棵樹的位置,就能確定同一行樹所在的直線;

④把彎曲的公路改直,就能縮短路程.

其中能用兩點之間,線段最短來解釋的現(xiàn)象個數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)數(shù)學(xué)活動小組為了調(diào)查居民的用水情況,從某社區(qū)的戶家庭中隨機抽取了戶家庭的月用水量,結(jié)果如下表所示:

月用水量(噸)

戶數(shù)

求這戶家庭月用水量的平均數(shù)、眾數(shù)和中位數(shù);

根據(jù)上述數(shù)據(jù),試估計該社區(qū)的月用水量;

由于我國水資源缺乏,許多城市常利用分段計費的方法引導(dǎo)人們節(jié)約用水,即規(guī)定每個家庭的月基本用水量為(噸),家庭月用水量不超過(噸)的部分按原價收費,超過(噸)的部分加倍收費.你認(rèn)為上述問題中的平均數(shù)、眾數(shù)和中位數(shù)中哪一個量作為月基本用水量比較合適?簡述理由.

查看答案和解析>>

同步練習(xí)冊答案