如圖,直線y=x與雙曲線y=數(shù)學(xué)公式的圖象在第一象限內(nèi)交于點(diǎn)A,過(guò)A點(diǎn)的另一直線y=mx+n交雙曲線于第三象限內(nèi)的點(diǎn)B,則不等式mx+n<數(shù)學(xué)公式的解集是________.

x<-4或0<x<2
分析:從圖象上得到A點(diǎn)的橫坐標(biāo)是2,把x=2代入解析式y(tǒng)=x,解得y=2,則A的坐標(biāo)是(2,2).把(2,2)代入y=,解得k=4,再解方程組,得到B的橫坐標(biāo),從而根據(jù)圖象求得不等式mx+n<的解集.
解答:直線y=x與雙曲線y=的圖象在第一象限內(nèi)交于點(diǎn)A,A點(diǎn)的橫坐標(biāo)是2,
把x=2代入解析式y(tǒng)=x,
解得y=2,則A的坐標(biāo)是(2,2).
把(2,2)代入y=,解得k=4,
在y=中,令y=-1,則x=-4,即B的坐標(biāo)是:(-4,-1).
根據(jù)圖象得到:不等式mx+n<的解集是x<-4或0<x<2.
故本題答案為:x<-4或0<x<2.
點(diǎn)評(píng):本題考查了一次函數(shù)與不等式(組)的關(guān)系及數(shù)形結(jié)合思想的應(yīng)用.解決此類問(wèn)題關(guān)鍵是仔細(xì)觀察圖形,注意幾個(gè)關(guān)鍵點(diǎn)(交點(diǎn)、原點(diǎn)等),做到數(shù)形結(jié)合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,帆船A和帆船B在太湖湖面上訓(xùn)練,O為湖面上的一個(gè)定點(diǎn),教練船靜候于點(diǎn)O,訓(xùn)練時(shí)要求A、B兩船始終關(guān)于O點(diǎn)對(duì)稱.以O(shè)為原點(diǎn),建立如圖所示的坐標(biāo)系,x軸、y軸的正方向分別表示正東、正北方向.設(shè)A、B兩船可近似看成在雙曲線y=
4x
上運(yùn)動(dòng),湖面風(fēng)平浪靜,雙帆遠(yuǎn)影優(yōu)美,訓(xùn)練中檔教練船與A、B兩船恰好在直線y=x上時(shí),三船同時(shí)發(fā)現(xiàn)湖面上有一遇險(xiǎn)的C船,此時(shí)教練船測(cè)得C船在東南45°方向上,A船測(cè)得AC與AB的夾角為60°,B船也同時(shí)測(cè)得C船的位置(假設(shè)C船位置不再改變,A、B、C三船可分別用A、B、C三點(diǎn)表示).
(1)發(fā)現(xiàn)C船時(shí),A、B、C三船所在位置的坐標(biāo)分別為A(
 
 
)、B(
 
,
 
)和C(
 
,
 
);
(2)發(fā)現(xiàn)C船,三船立即停止訓(xùn)練,并分別從A、O、B三點(diǎn)出發(fā)沿最短路線同時(shí)前往救援,設(shè)A、B兩船的速度相等,教練船與A船的速度之比為3:4,問(wèn)教練船是否最先趕到?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,經(jīng)過(guò)點(diǎn)A,C,B的拋物線的一部分與經(jīng)過(guò)點(diǎn)A,E,B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“雙拋物線”.已知P為AB中精英家教網(wǎng)點(diǎn),且P(-1,0),C(
2
-1,1),E(0,-3),S△CPA=1.
(1)試求“雙拋物線”中經(jīng)過(guò)點(diǎn)A,E,B的拋物線的解析式;
(2)若點(diǎn)F在“雙拋物線”上,且S△FAP=S△CAP,請(qǐng)你直接寫(xiě)出點(diǎn)F的坐標(biāo);
(3)如果一條直線與“雙拋物線”只有一個(gè)交點(diǎn),那么這條直線叫做“雙拋物線”的切線.若過(guò)點(diǎn)E與x軸平行的直線與“雙拋物線”交于點(diǎn)G,求經(jīng)過(guò)點(diǎn)G的“雙拋物線”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問(wèn)題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過(guò)程:
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫(huà)出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請(qǐng)你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過(guò)隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問(wèn)該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問(wèn)題,請(qǐng)予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長(zhǎng)為l求l的最大值.
II•如圖④,過(guò)原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對(duì)稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過(guò)P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問(wèn)在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:湖南省中考真題 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問(wèn)題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過(guò)程:
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫(huà)出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請(qǐng)你求出拋物線的解析式;
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過(guò)隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m,為了確保安全,問(wèn)該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問(wèn)題,請(qǐng)予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸上,設(shè)矩形ABCD的周長(zhǎng)為l求l的最大值;
II.如圖④,過(guò)原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對(duì)稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過(guò)P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q,問(wèn)在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,帆船A和帆船B在太湖湖面上訓(xùn)練,O為湖面上的一個(gè)定點(diǎn),教練船靜候于O點(diǎn),訓(xùn)練時(shí)要求A、B兩船始終關(guān)于O點(diǎn)對(duì)稱.以O(shè)為原點(diǎn),建立如圖所示的坐標(biāo)系,x軸、y軸的正方向分別表示正東、正北方向.設(shè)A、B兩船可近似看成在雙曲線y=上運(yùn)動(dòng),湖面風(fēng)平浪靜,雙帆遠(yuǎn)影優(yōu)美,訓(xùn)練中當(dāng)教練船與A、B兩船恰好在直線y=x上時(shí),三船同時(shí)發(fā)現(xiàn)湖面上有一遇險(xiǎn)的C船,此時(shí)教練船測(cè)得C船在東南45°方向上,A船測(cè)得AC與AB的夾角為60°,B船也同時(shí)測(cè)得C船的位置(假設(shè)C船位置不再改變,A、B、C三船可分別用A、B、C三點(diǎn)表示).

1.發(fā)現(xiàn)C船時(shí),A、B、C三船所在位置的坐標(biāo)分別為A(_______,_______)、B(_______,_______)和C(_______,_______);

2.發(fā)現(xiàn)C船,三船立即停止訓(xùn)練,并分別從A、O、B三點(diǎn)出發(fā)沿最短路線同時(shí)前往救援,設(shè)A、B兩船的速度相等,教練船與A船的速度之比為3:4,問(wèn)教練船是否最先趕到?請(qǐng)說(shuō)明理由

 

查看答案和解析>>

同步練習(xí)冊(cè)答案