【題目】已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)C作CE⊥BD,交BD的延長(zhǎng)線于點(diǎn)E,如圖①.
(1)求證:ADCD=BDDE;
(2)若BD是邊AC的中線,如圖②,求的值.
【答案】(1)見解析;(2)
【解析】
(1)由CE⊥BD得∠CED=90°=∠A,由對(duì)頂角相等可得∠ADB=∠EDC,可證△ABD∽△ECD,利用相似三角形的性質(zhì)即可證明;
(2)設(shè)CD=AD=a,則AB=AC=2a,由勾股定理求得BD,再根據(jù)△ABD∽△ECD,利用相似三角形的性質(zhì)解答即可;
解:(1)證明:∵CE⊥BD
∴∠CED=90°=∠A
∵∠ADB=∠EDC
∴△ABD∽△ECD
∴
∴ADCD=BDDE;
(2)如圖②,設(shè)CD=AD=a,則AB=AC=2a
在Rt△ABD中,由勾股定理得:BD==a
∵△ABD∽△ECD
∴
∴
∴CE=
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)(a,b為常數(shù),且)與反比例函數(shù)(m為常數(shù),且)的圖象交于點(diǎn)A(﹣2,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結(jié)OA、OB,求△AOB的面積;
(3)直接寫出當(dāng)時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面內(nèi)容,并解答問題:
楊輝和他的一個(gè)數(shù)學(xué)問題
我國古代對(duì)代數(shù)的研究,特別是對(duì)方程的解法研究有著優(yōu)良的傳統(tǒng)并取得了重要成果.
楊輝,字謙光,錢塘(今浙江杭州)人,南宋杰出的數(shù)學(xué)家和數(shù)學(xué)教育家,楊輝一生留下了大量的著述,他著名的數(shù)學(xué)書共五種二十一卷,它們是:《詳解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通變本末》3卷(1274年,第3卷與他人合編),《田(楊輝,南宋數(shù)學(xué)家)畝比類乘除捷法》2卷(1275年),《續(xù)古摘奇算法》2卷(1275年,與他人合編),其中后三種為楊輝后期所著,一般稱之為《楊輝算法》.下面是楊輝在1275年提出的一個(gè)問題(選自楊輝所著《田畝比類乘除捷法》):
直田積(矩形面積)八百六十四步(平方步),只云闊(寬)不及長(zhǎng)一十二步(寬比長(zhǎng)少一十二步),問闊及長(zhǎng)各幾步.
請(qǐng)你用學(xué)過的知識(shí)解決這個(gè)問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形內(nèi)接于,,是對(duì)角線。點(diǎn)E在的延長(zhǎng)線上,且.
(1)判斷與的位置關(guān)系,并說明理由;
(2)與的延長(zhǎng)線交于點(diǎn)F,若,,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,以AB為直徑作⊙O,交BC邊于點(diǎn)D,交AC邊于點(diǎn)F,作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若△ABC的邊長(zhǎng)為4,求EF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,直角梯形OABC的邊OC、OA分別在x軸、y軸上,AB∥OC,∠AOC=90°,∠BCO=45°,BC=,點(diǎn)C的坐標(biāo)為(-18,0).
(1)求點(diǎn)B的坐標(biāo);
(2)若直線DE交梯形對(duì)角線BO于點(diǎn)D,交y軸于點(diǎn)E,且OE=4,OD=2BD,求直線DE的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DB交CB的延長(zhǎng)線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校園空地上有一面墻,長(zhǎng)度為20m,用長(zhǎng)為32m的籬笆和這面墻圍成一個(gè)矩形花圃,如圖所示.
(1)能圍成面積是126m2的矩形花圃嗎?若能,請(qǐng)舉例說明;若不能,請(qǐng)說明理由.
(2)若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形中,,對(duì)角線,相交于點(diǎn),動(dòng)點(diǎn)由點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng).設(shè)點(diǎn)的運(yùn)動(dòng)路程為,的面積為,與的函數(shù)關(guān)系圖象如圖②所示,則邊的長(zhǎng)為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com