【題目】如圖,已知A4,2)、Bn,﹣4)是一次函數(shù)ykx+b圖象與反比例函數(shù)圖象的兩個(gè)交點(diǎn).

1)求此反比例函數(shù)和一次函數(shù)的解析式;

2)直接寫出AOB的面積;

3)根據(jù)圖象直接寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

【答案】1y=﹣,y=﹣x2;(2SAOB6;(3)﹣4x0x2

【解析】

1)利用待定系數(shù)法即可求出函數(shù)的解析式;

2)由(1)求出的一次函數(shù)解析式求出ABx軸的交點(diǎn)坐標(biāo)(-2,0),從而將AOB分解為兩個(gè)底邊長(zhǎng)為2的三角形,然后結(jié)合A、B兩點(diǎn)縱坐標(biāo)求出各自三角形面積,最后相加即可;

3)根據(jù)一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍就是對(duì)應(yīng)的一次函數(shù)圖像在反比例函數(shù)圖像下方的自變量的取值范圍求解即可.

解:(1)把(﹣4,2)代入y2,則m=﹣8

則反比例函數(shù)的解析式是y=﹣

把(n,﹣4)代入y=﹣n=﹣2,

B的坐標(biāo)是(2,﹣4).

根據(jù)題意得:,,

解得:,,,

∴一次函數(shù)的解析式是y=﹣x2;

2)設(shè)ABx軸的交點(diǎn)是C,則C的坐標(biāo)是(﹣20).

OC2,

SAOC2SBOC4,

SAOB6

3)由函數(shù)圖象可知x的取值范圍時(shí)﹣4x0x2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點(diǎn)E為AB的中點(diǎn).

(1)求證:△ADC∽△ACB.

(2)若AD=2,AB=3,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對(duì)稱軸為,且過點(diǎn),有下列結(jié)論:①0;②0;③;④0.其中正確的結(jié)論是(

A.①③B.①④C.①②D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等腰直角三角形,,為邊上一點(diǎn),且,連結(jié),過點(diǎn)于點(diǎn),交于點(diǎn).,則的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B3,0),C0,3)三點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)M是線段BC上的點(diǎn)(不與B、C重合),過MNMy軸交拋物線于N,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示MN的長(zhǎng);

3)在(2)的條件下,連接NB,NC,是否存在點(diǎn)m,使△BNC的面積最大?若存在,求m的值和△BNC的面積;若不存在,說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過點(diǎn)EEGCDAF于點(diǎn)G,連接DG.給出以下結(jié)論:①DGDF;②四邊形EFDG是菱形;③EG2GF×AF;④當(dāng)AG6,EG2時(shí),BE的長(zhǎng)為,其中正確的編號(hào)組合是(  )

A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線yx交于點(diǎn)M,∠AMB90°,其兩邊分別與兩坐標(biāo)軸的正半軸交于點(diǎn)A、B,四邊形OAMB的面積為6

1)求k的值;

2)點(diǎn)P在(1)的反比例函數(shù)yx0)的圖象上,若點(diǎn)P的橫坐標(biāo)為3,在x軸上有一點(diǎn)D4,0),若在直線yx上有動(dòng)點(diǎn)C,構(gòu)成PDC,其面積為3,請(qǐng)寫出C點(diǎn)的坐標(biāo);

3)若∠EPF90°,其兩邊分別為與x軸正半軸,直線yx交于點(diǎn)EF,問是否存在點(diǎn)E,使PEPF?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC≠BC,點(diǎn)D和點(diǎn)A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,連接AD,求∠ADB的度數(shù).(不必解答)

(1)小聰先從特殊問題開始研究,當(dāng)α=90°,β=30°時(shí),利用軸對(duì)稱知識(shí),以AB為對(duì)稱軸構(gòu)造△ABD的軸對(duì)稱圖形△ABD′,連接CD′(如圖2),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識(shí)便可解決這個(gè)問題.

請(qǐng)結(jié)合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是   三角形;∠ADB的度數(shù)為   

(2)在原問題中,當(dāng)∠DBC<∠ABC(如圖1)時(shí),請(qǐng)計(jì)算∠ADB的度數(shù);

(3)在原問題中,過點(diǎn)A作直線AE⊥BD,交直線BDE,其他條件不變?nèi)?/span>BC=7,AD=2.請(qǐng)直接寫出線段BE的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為6的正方形ABCD中,點(diǎn)E、F、G分別在邊AB、AD、CD上,EGBF交于點(diǎn)IAE=2,BF=EG,DG>AE,則DI的最小值為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案