【題目】已知:如圖,正方形的邊長為,,分別平分正方形的兩個外角,且滿足,連接,,.
求證:;
求的度數(shù).
【答案】(1)詳見解析;(2)135°.
【解析】
(1)如圖(3)由條件可以得出∠BMA=∠3,∠ABM=∠ADN=135°,就可以得出△ABM∽△NDA,利用相似三角形的性質(zhì)就可以得出BMDN=36;
(2)由△ABM∽△NDA,可以得出BM:DA=AB:ND,再由正方形的性質(zhì)通過等量代換就可以得出△BCM∽△DNC.利用角的關(guān)系和圓周角的度數(shù)就可以求出結(jié)論;
(3)將△AND繞點A順時針旋轉(zhuǎn)90°得到△ABF,連接MF,證明△ABF≌△ADN.利用邊角的關(guān)系得出△BMF是直角三角形,由勾股定理就可以得出結(jié)論.
證明:
∵,分別平分正方形的兩個外角,
∴,
∵四邊形是正方形,
∴,,
∴,
∵,
,∵,
∴,
∴,
∴,
∴.
∵,
∴,∵,
∴,
∴,
∵,
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并完成任務(wù)。
箏形的定義:兩組鄰邊分別相等的四邊形叫做箏形,幾何圖形的定義通?勺鳛閳D形的性質(zhì)也可以作為圖形的判定方法.也就是說,如圖,若四邊形ABCD是一個箏形,則AB=AD,BC=CD;若AB=AD,BC=CD,則四邊形ABCD是箏形.
如圖,四邊形ABCD是一個箏形,其中AB=AD,BC=CD.對角線AC,BD相交于點O,過點0作0M⊥AB,ON⊥AD,垂足分別為M,N.求證:四邊形AMON是箏形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】凸四邊形的四個頂點滿足:每一個頂點到其他三個頂點距離之積都相等.則四邊形一定是( )
A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=6,AC=3,將△ADC沿AC折疊,點D落在點D′處,CD′與AB交于點F.點P為線段AC(不含點A、C)上任意一點,PM⊥AB于點M,PN⊥CD′于點N,PM+PN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,平分交于點,在上截取,過點作交于點.求證:四邊形是菱形;
如圖,中,平分的外角交的延長線于點,在的延長線上截取,過點作交的延長線于點.四邊形還是菱形嗎?如果是,請證明;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEF中,滿足AB=DE,∠B=∠E,如果要判定這兩個三角形全等,那么添加的條件不正確的是( )
A. ∠A=∠D B. ∠C=∠F C. BC=EF D. AC=DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①, 已知△ABC中, ∠BAC=90°, AB=AC, AE是過A的一條直線, 且B、C在AE的異側(cè), BD⊥AE于D, CE⊥AE于E.
(1)求證: BD=DE+CE.
(2)若直線AE繞A點旋轉(zhuǎn)到圖②位置時(BD<CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請給予證明;
(3)若直線AE繞A點旋轉(zhuǎn)到圖③位置時(BD>CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請直接寫出結(jié)果, 不需證明.
(4)根據(jù)以上的討論,請用簡潔的語言表達BD與DE,CE的數(shù)量關(guān)系。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com