【題目】如圖,平面直角坐標系中,拋物線y=x2﹣2x與x軸交于O、B兩點,頂點為P,連接OP、BP,直線y=x﹣4與y軸交于點C,與x軸交于點D.
(1)寫出點B坐標;判斷△OBP的形狀;
(2)將拋物線沿對稱軸平移m個單位長度,平移的過程中交y軸于點A,分別連接CP、DP;
(i)若拋物線向下平移m個單位長度,當S△PCD= S△POC時,求平移后的拋物線的頂點坐標;
(ii)在平移過程中,試探究S△PCD和S△POD之間的數(shù)量關系,直接寫出它們之間的數(shù)量關系及對應的m的取值范圍.
【答案】(1)(2,0);等腰直角三角形;(2)(i)或;(ii)當m≥2時,S△POD﹣S△PCD=6;當﹣1≤m<2時,S△POD+S△PCD=6;當m<﹣1時,S△POD﹣S△PCD=6.
【解析】
(1)根據(jù)自變量與函數(shù)值得對應關系,可得B點坐標,根據(jù)配方法,可得頂點坐標,根據(jù)勾股定理及勾股定理的逆定理,可得答案;
(2)根據(jù)自變量與函數(shù)值得對應關系,可得C,D,M點坐標,根據(jù)平移規(guī)律,可得P點坐標,根據(jù)平行于y軸的直線上兩點間的距離較大的縱坐標減較小的縱坐標,可得PM的長,(i)根據(jù)面積的關系,可得關于m的方程,根據(jù)解方程,可得到頂點坐標;(ii)根據(jù)三角形的面積,可得答案.
(1)當y=0時,x2﹣2x=0,解得x=0(舍)或x=2,即B點坐標為(2,0),
∵拋物線y=x2﹣2x=(x﹣1)2﹣1,
∴P點坐標為(1,﹣1),由勾股定理,得
OP2=(2﹣1)2+12=2,
∴OP2+BP2=OB2 , OP=BP,
∴△OBP是等腰直角三角形,
(2)解:∵直線y=x﹣4與y軸交于點C,與x軸交于點D,
∴C(0,﹣4),D(4,0),當x=1時,y=﹣3,即M(1,﹣3),
拋物線向下平移m個單位長度,解析式為y=(x﹣1)2﹣(1+m),P(1,﹣1﹣m),
∴
S△PCD=S△PMC+S△PMD= PM|xP﹣xC|= |m﹣2|×4=2|m﹣2|,
(i)S△POC= AC|xP|= ×4×1=2,
∵S△PCD= S△POC,
∴S△PCD=2|m﹣2|=2 ,
解得m=2+ 或m=2﹣ ,
∴或;
(ii)
①當m≥2時,S△PCD=2|m﹣2|=2m﹣4,S△POD=2|m+1|=2m+2,
∴S△POD﹣S△PCD=6
②當﹣1≤m<2時,S△PCD=2|m﹣2=4﹣2m,S△POD=2|m+1|=2m+2,
∴S△POD+S△PCD=6
③當m<﹣1時,S△PCD=2|m﹣2|=4﹣2m,S△POD=2|m+1|=2﹣2m,
∴S△POD﹣S△PCD=6,
綜上所述:當m≥2時,S△POD﹣S△PCD=6;當﹣1≤m<2時,S△POD+S△PCD=6;當m<﹣1時,S△POD﹣S△PCD=6.
科目:初中數(shù)學 來源: 題型:
【題目】學校與圖書館在同一條筆直道路上,甲從學校去圖書館,乙從圖書館回學校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地,兩人之間的距離(米)與時間(分鐘)之間的函數(shù)關系如圖所示,則下列說法正確的是( )
①當分鐘時甲乙兩人相遇;
②甲的速度為40米/分鐘;
③乙的速度為50米/分鐘;
④乙到達目的地時,甲離目的地的距離為800米.
A.①②B.③④C.①②④D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A為某旅游景區(qū)的最佳觀景點,游客可從B處乘坐纜車先到達小觀景平臺DE觀景,然后再由E處繼續(xù)乘坐纜車到達A處,返程時從A處乘坐升降電梯直接到達C處,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(參考數(shù)據(jù):sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,∠BAD+∠BCD=180°, AC平分∠BAD,過點C作CE⊥AD,垂足為E, CD=4,AE=10,則四邊形ABCD的周長是____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點P從點A開始沿邊AB向終點B以每秒2個單位長度的速度移動,動點Q從點B開始沿邊BC以每秒4個單位長度的速度向終點C移動,如果點P、Q分別從點A、B同時出發(fā),那么△PBQ的面積S隨出發(fā)時間t(s)如何變化?寫出函數(shù)關系式及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)(﹣3x2)(x3y)2;
(2)(x﹣5)(2x+1);
(3)(a﹣2)2﹣(a﹣1)(a+1);
(4)(3a﹣b+)(3a﹣b﹣).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,為邊上的中線,點在上,以點為圓心,長為半徑畫弧,交的延長線于點,點在上,且,連接.
(1)依題意補全圖形;
(2)求證:;
(3)若平分,則與滿足的等量關系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD.
(1)發(fā)現(xiàn)問題:若∠ABF=∠ABE,∠CDF=∠CDE,則∠F與∠E的等量關系為 .
(2)探究問題:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F與∠E的等量關系,并證明你的結論.
(3)歸納問題:若∠ABF=∠ABE,∠CDF=∠CDE.直接寫出∠F與∠E的等量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中, 對角線AC、BD相交于點O. E、F是對角線AC上的兩個不同點,當E、F兩點滿足下列條件時,四邊形DEBF不一定是平行四邊形( ).
A.AE=CFB.DE=BFC.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com