【題目】已知:在△ABC中,AB=AC,點D是AB上一點,以BD為直徑的⊙0與AC邊相切于點E,交BC于點F,FG⊥AC于點G.
(1)如圖l,求證:GE=GF;
(2)如圖2,連接DE,∠GFC=2∠AED,求證:△ABC為等邊三角形;
(3)如圖3,在(2)的條件下,點H、K、P分別在AB、BC、AC上,AK、BP分別交CH于點M、N,AH=BK,∠PNC﹣∠BAK=60°,CN=6,CM=4,求BC的長.
【答案】(1)見解析;(2)見解析;(3)BC=10.
【解析】
(1)由切線的定義得到直角條件,由半徑相等可證OFGE為正方形;
(2)由圓周角定理可得直角條件,由2倍角關系可得60°條件,從而證明等邊三角形;
(3)結合(2)的結論和條件中角的關系,需要設置角參數,標識圖形從而發(fā)現BC=BR,用勾股定理建立方程關系,求解方程即可.
解:(1)如圖1,連接OE和OF
∵AC是⊙O的切線
∴OE⊥AC,
∴∠OEG=90°
∵FG⊥AC,
∴∠FGE=90°
∵AB=AC,
∴∠ABC=∠ACB
∵OB=OF,
∴∠OBF=∠OFB
∴∠OFB=∠ACB,
∴OF∥AC
∴∠OFG+∠FGE=180°,
∴∠OFG=90°
∴∠OFG=∠FGE=∠OEG=90°
∴四邊形OFGE為矩形
∵OF=OE,
∴四邊形OFGE為正方形
∴GE=GF
(2)如圖2,連接OE,BE
∵BD是⊙O的直徑,
∴∠BED=90°
∴∠OED+∠OEB=90°
∵∠OEG=90°,
∴∠AED+∠OED=90°
∵∠OEG=90°,
∴∠AED+∠OED=90°
∴∠OEB=∠AED
∵OB=OE,
∴∠OBE=∠OEB
∴∠OBE=∠AED
∴∠AOE=2∠OEB=2∠AED
∵∠GFC=2∠AED
∴∠AOE=∠GFC
∵∠C+∠GFC=90°,∠A+∠AOE=90°
∴∠C=∠A
∴BA=BC,
∵AB=AC
∴AB=AC=BC
∴△ABC為等邊三角形
(3)∵△ABC為等邊三角形
∴∠CAH=∠ABK=60°
∵AH=BK,AC=AB,
∴△CAH≌△ABK(SAS)
∴∠ACH=∠BAK
∵∠KMC=∠KAC+∠ACM
∴∠KMC=∠KAC+∠BAK=60°
過點C作CQ⊥AK,垂足為Q,過點B作BT⊥CH,垂足為T
∴∠AQC=∠CTB=90°
∵∠QAC=∠BAC﹣∠BAK=60°,∠TCB=∠ACB﹣∠ACH=60°﹣∠ACH
∴∠QAC=∠TCB,
∵AC=BC
∴△AQC≌△CTB(AAS)
∴QC=BT
在Rt△MQC中,
∵CM=4,∠QMC=60°,sin∠QMC=
∴QC=6
設∠BAK=2α=∠ACH
∵∠PNC﹣∠BAK=60°,
∴∠PNC=60°+α=∠BNH
∴∠BCH=∠ACB﹣∠ACH=60°﹣2α
延長NH到點R,使RT=TN,連接BR
∴BT使RN的垂直平分線
∴BR=BN
∴∠BNR=∠BRN=60°+α
∴∠CBR=180°﹣∠BCR﹣∠CRB=60°+α
∴∠CBR=∠CRB=60°+α
∴BC=RC
設TN=RT=a,
∵CN=6
∴CT=a+6,CR=CB=2a+6
∵CQ=BT=6
在Rt△BTC中
BT2+TC2=BC2
∴62+(a+6)2=(2a+6)2
∴a1=﹣6(舍),a2=2
∴TN=2
∴BC=10
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形ABCO的面積為15,邊OA比OC大2.E為BC的中點,以OE為直徑的⊙O′交軸于D點,過點D作DF⊥AE于點F。
(1)求OA、OC的長;
(2)求證:DF為⊙O′的切線;
(3)小明在解答本題時,發(fā)現△AOE是等腰三角形。由此,他斷定:“直線BC上一定存在除點E以外的點P,使△AOP也是等腰三角形,且點P一定在⊙O′外”。你同意他的看法嗎?請充分說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AE與BF交于點O,點O在CG上,根據尺規(guī)作圖的痕跡,判斷下列說法不正確的是( 。
A. AE、BF是△ABC的內角平分線
B. CG也是△ABC的一條內角平分線
C. AO=BO=CO
D. 點O到△ABC三邊的距離相等
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數y=kx+b的圖象經過(﹣4,﹣2),(1,8)兩點.
(1)求該一次函數的表達式;
(2)如圖,該一次函數的圖象與反比例函數y=的圖象相交于點A,B,與y軸交于點C,且AB=BC,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是BC上一點,連接AE,點F是AE上一點,連接FC,若∠BAE=∠EFC,CF=CD,AB:BC=3:2,AF=4,則FC的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,O是CD的中點,延長AO交BC的延長線于點E,且BC=CE.
(1)求證:△AOD≌△EOC;
(2)若∠BAE=90°,AB=6,OE=4,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場用2500元購進A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進價、標價如下表所示.
類型 價格 | A型 | B型 |
進價(元/盞) | 40 | 65 |
標價(元/盞) | 60 | 100 |
(1)這兩種臺燈各購進多少盞?
(2)在每種臺燈銷售利潤不變的情況下,若該商場計劃銷售這批臺燈的總利潤至少為1400元,問至少需購進B種臺燈多少盞?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學習小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結果出現的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結果的實驗最有可能的是( )
A. 袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球
B. 擲一枚質地均勻的正六面體骰子,向上的面的點數是偶數
C. 先后兩次擲一枚質地均勻的硬幣,兩次都出現反面
D. 先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數之和是7或超過9
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com