【題目】如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點D是AC上一個動點,以AB為對角線的所有平行四邊形ADBE中,線段DE的最小值是( )
A.4
B.2
C.2
D.6
【答案】A
【解析】解:∵在Rt△ABC中,∠B=90°,
∴BC⊥AC.
∵四邊形ADBE是平行四邊形,
∴OD=OE,OA=OB.
∴當OD取最小值時,DE線段最短,此時OD⊥BC.
∴OD∥CB.
又點O是AB的中點,
∴OD是△ABC的中位線,
∴OD= CB=2,
∴ED=2OD=4.
所以答案是:A.
【考點精析】本題主要考查了垂線段最短和三角形中位線定理的相關知識點,需要掌握連接直線外一點與直線上各點的所有線段中,垂線段最短;現實生活中開溝引水,牽牛喝水都是“垂線段最短”性質的應用;連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】我市某重點中學校團委、學生會發(fā)出倡議,在初中各年級捐款購買書籍送給我市貧困地區(qū)的學校.初一年級利用捐款買甲、乙兩種自然科學書籍若干本,用去5324元;初二年級買了A、B兩種文學書籍若干本,用去4840元,其中A、B的數量分別與甲、乙的數量相等,且甲種書與B種書的單價相同,乙種書與A種書的單價相同.若甲、乙兩種書的單價之和為121元,則初一和初二兩個年級共向貧困地區(qū)的學校捐獻了________本書.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖
(1)問題:如圖①,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.
求證:ADBC=APBP.
(2)探究:如圖②,在四邊形ABCD中,點P為AB上一點,當∠DPC=∠A=∠B=θ,上述結論是否依然成立?說明理由.
(3)應用:請利用(1)(2)獲得的經驗解決問題:
如圖③,在△ABD中,AB=6,AD=BD=5,點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A,設點P的運動時間為t秒,當以D為圓心,以DC為半徑的圓與AB相切時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把長方形紙片ABCD沿EF折疊后,使得點D落在點H的位置上,點C恰好落在邊AD上的點G處,連接EG.
(1)△GEF是等腰三角形嗎?請說明理由;
(2)若CD=4,GD=8,求HF的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知⊙O為△ABC的外接圓,點E是△ABC的內心,AE的延長線交BC于點F,交⊙O于點D
(1)如圖1,求證:BD=ED;
(2)如圖2,AD為⊙O的直徑.若BC=6,sin∠BAC= ,求OE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A、B、C是數軸上三點,O為原點.點C對應的數為6,BC=4,AB=12.
(1)求點A、B對應的數;
(2)動點P、Q分別同時從A、C出發(fā),分別以每秒6個單位和3個單位的速度沿數軸正方向運動.M為AP的中點,N在CQ上,且CN=CQ,設運動時間為t(t>0).
①求點M、N對應的數(用含t的式子表示); ②t為何值時,OM=2BN.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正比例函數y=2x和反比例函數的圖象交于點A(m,﹣2).
(1)求反比例函數的解析式;
(2)觀察圖象,直接寫出正比例函數值大于反比例函數值時自變量x的取值范圍;
(3)若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,∠ABC=90,AE∥CD交BC于E,O是AC的中點,AB=,AD=2,BC=3,下列結論:
①∠CAE=30;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正確的是()
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,E,F分別為邊AB,CD的中點,連接DE、BF、BD.
(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com