【題目】如圖,拋物線yx2bxc過點A(30),B(1,0),交y軸于點C,點P是該拋物線上一動點,點PC點沿拋物線向A點運動(P不與A重合),過點PPDy軸交直線AC于點D

1)求拋物線的解析式;

2)求點P在運動的過程中線段PD長度的最大值;

3APD能否構(gòu)成直角三角形?若能,請直接寫出所有符合條件的點P坐標(biāo);若不能,請說明理由.

【答案】1yx2-4x3;(2)點P在運動的過程中,線段PD長度的最大值為;(3)能,點P的坐標(biāo)為:(1,0)或(2,-1).

【解析】

1)把點A、B的坐標(biāo)代入拋物線解析式,解方程組得到b、c的值,即可得解;

2)求出點C的坐標(biāo),再利用待定系數(shù)法求出直線AC的解析式,再根據(jù)拋物線解析式設(shè)出點P的坐標(biāo),然后表示出PD的長度,再根據(jù)二次函數(shù)的最值問題解答;

3)分情況討論APD是直角時,點P與點B重合,求出拋物線頂點坐標(biāo),然后判斷出點P為在拋物線頂點時,∠PAD是直角,分別寫出點P的坐標(biāo)即可;

1)把點A(3,0)和點B(10)代入拋物線yx2bxc,

得:

解得

yx2-4x3

2)把x0代入yx2-4x3,得y3

C(03)

又∵A(3,0),

設(shè)直線AC的解析式為:ykxm,

把點AC的坐標(biāo)代入得:

∴直線AC的解析式為:y=-x3

PD=-x3- (x2-4x3)=-x23x

0<x<3,

x時,PD最大為

即點P在運動的過程中,線段PD長度的最大值為

3APD是直角時,點P與點B重合,

此時,點P1,0),

yx24x+3=(x221,

∴拋物線的頂點坐標(biāo)為(2,﹣1),

A30),

∴點P為在拋物線頂點時,∠PAD45°+45°=90°,

此時,點P2,﹣1),

綜上所述,點P1,0)或(2,﹣1)時,△APD能構(gòu)成直角三角形;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是正方形ABCD內(nèi)的一點,連接CP,將線段CP繞點C順時針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ

(1)、如圖a,求證:△BCP≌△DCQ;

(2)、如圖,延長BP交直線DQ于點E

如圖b,求證:BE⊥DQ

如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師將自己201910月至20205月的通話時長(單位:分鐘)的有關(guān)數(shù)據(jù)整理如下:

201910月至20203月通話時長統(tǒng)計表

時間

10

11

12

1

2

3

時長(單位:分鐘)

520

530

550

610

650

660

20204月與20205月,這兩個月通話時長的總和為1100分鐘根據(jù)以上信息,推斷張老師這八個月的通話時長的中位數(shù)可能的最大值為( )

A.550B.580C.610D.630

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD是⊙O上兩點,且,連接OCBD,OD

1)求證:OC垂直平分BD;

2)過點C作⊙O的切線交AB的延長線于點E,連接AD,CD

①依題意補全圖形;

②若AD=6,,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形的頂點坐標(biāo)分別為(1,1),(1,-1),(-1,-1),(-11),軸上有一點(0,2).作點關(guān)于點的對稱點,作點關(guān)于點的對稱點,作點關(guān)于點的對稱點,作點關(guān)于點的對稱點,作點關(guān)于點的對稱點,作點關(guān)于點的對稱點,……,按此操作下去,則的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大海中某燈塔P周圍10海里范圍內(nèi)有暗礁,一艘海輪在點A處觀察燈塔P在北偏東60°方向,該海輪向正東方向航行8海里到達(dá)點B處,這時觀察燈塔P恰好在北偏東45°方向.如果海輪繼續(xù)向正東方向航行,會有觸礁的危險嗎?試說明理由.(參考數(shù)據(jù):≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB 是⊙O 的弦,半徑OE AB ,P AB 的延長線上一點,PC 與⊙O相切于點 C,連結(jié) CE,交 AB 于點 F,連結(jié) OC

1)求證:PC=PF.

2)連接 BE,若∠CEB=30°,半徑為 8,tan P ,求 FB 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.打開電視,它正在播天氣預(yù)報是不可能事件

B.要考察一個班級中學(xué)生的視力情況適合用抽樣調(diào)查

C.拋擲一枚均勻的硬幣,正面朝上的概率是,若拋擲10次,就一定有5次正面朝上.

D.甲、乙兩人射中環(huán)數(shù)的方差分別為,,說明乙的射擊成績比甲穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某款籃球架的示意圖,支架AC與底座BC所成的∠ACB65°,支架ABBC,籃球支架HEBC,且籃板DFHE于點E,已知底座BC1米,AH米,HF 米,HE1米.

1)求∠FHE的度數(shù);

2)已知該款籃球架符合國際籃聯(lián)規(guī)定的籃板下沿D距地面2.90米的規(guī)定,求DE的長度.(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.41,1.41

查看答案和解析>>

同步練習(xí)冊答案