【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點的縱坐標分別為3,1,反比例函數(shù)y= 的圖象經(jīng)過A,B兩點,則菱形ABCD的面積為

【答案】4
【解析】解:過點A作x軸的垂線,與CB的延長線交于點E,
∵A,B兩點在反比例函數(shù)y= 的圖象上且縱坐標分別為3,1,
∴A,B橫坐標分別為1,3,
∴AE=2,BE=2,
∴AB=2 ,
S菱形ABCD=底×高=2 ×2=4
所以答案是4
【考點精析】利用菱形的性質(zhì)對題目進行判斷即可得到答案,需要熟知菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,直線y= x+2與x軸交于點A,與y軸交于點C,拋物線y=ax2+bx+c的對稱軸是x=﹣ ,且經(jīng)過A,C兩點,與x軸的另一個交點為點B.

(1)求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求四邊形PAOC的面積的最大值,并求出此時點P的坐標.
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△AOC相似?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求代數(shù)式( )÷ 的值,其中x=2sin60°﹣1,y=tan45°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯誤的是(
A.函數(shù)有最小值
B.對稱軸是直線x=
C.當x< ,y隨x的增大而減小
D.當﹣1<x<2時,y>0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.
(Ⅰ)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長;
(Ⅱ)如圖②,若∠CAB=60°,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是
(2)如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請出判斷判斷并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖.已知二次函數(shù)y=﹣x2+bx+3的圖象與x軸的一個交點為A(4,0),與y軸交于點B.

(1)求此二次函數(shù)關(guān)系式和點B的坐標;
(2)在x軸的正半軸上是否存在點P.使得△PAB是以AB為底邊的等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,直線y1=2x﹣2與坐標軸交于A、B兩點,與雙曲線y2=(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論:
①SADB=SADC;
②當0<x<3時,y1<y2
③如圖,當x=3時,EF=;
④當x>0時,y1隨x的增大而增大,y2隨x的增大而減。
其中正確結(jié)論的個數(shù)是(  )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,分別延長OA,OC到點E,F(xiàn),使AE=CF,依次連接B,F(xiàn),D,E各點.

(1)求證:△BAE≌△BCF
(2)若∠ABC=50°,則當∠EBA=°時,四邊形BFDE是正方形.

查看答案和解析>>

同步練習冊答案