如圖,已知直線y=x與拋物線交于A、B兩點.

(1)求交點A、B的坐標;
(2)記一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)的函數(shù)值為y2.若y1>y2,求x的取值范圍;
(3)在該拋物線上存在幾個點,使得每個點與AB構(gòu)成的三角形為等腰三角形?并求出不少于3個滿足條件的點P的坐標.

(1)A(0,0),B(2,2)。
(2)0<x<2。
(3)符號條件的點P有4個,
其中P1,),P2,),P3(﹣2,2)。

解析試題分析:(1)根據(jù)題意可以列出關(guān)于x、y的方程組,通過解方程組可以求得點A、B的坐標。
(2)根據(jù)函數(shù)圖象可以直接回答問題;
(3)需要分類討論:以AB為腰和以AB為底的等腰三角形。
解:(1)如圖,∵直線y=x與拋物線交于A、B兩點,
,解得,。
∴A(0,0),B(2,2)。
(2)由(1)知,A(0,0),B(2,2).
∵一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)的函數(shù)值為y2,
∴當y1>y2時,根據(jù)圖象可知x的取值范圍是:0<x<2。
(3)該拋物線上存在4個點,使得每個點與AB構(gòu)成的三角形為等腰三角形。理由如下:
∵A(0,0),B(2,2),∴B=。
根據(jù)題意,可設(shè)P(x,),
①當PA=PB時,點P是線段AB的中垂線與拋物線的交點,

易求線段AB的中垂線的解析式為y=﹣x+2,
,
解得,。
∴P1,),P2)。
②當PA=AB時,根據(jù)拋物線的對稱性知,點P與點B關(guān)于y軸對稱,即P3(﹣2,2)。
③當AB=PB時,點P4的位置如圖所示。
綜上所述,符號條件的點P有4個,
其中P1,),P2,),P3(﹣2,2)。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點C(0,1),頂點為Q(2,3),點D在x軸正半軸上,且OD=OC.

(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點C逆時針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C的坐標為(m,0)(m>0),點D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設(shè)點B的對應點為點E.

(1)當m=3時,點B的坐標為       ,點E的坐標為         
(2)隨著m的變化,試探索:點E能否恰好落在x軸上?若能,請求出m的值;若不能,請說明理由.
(3)如圖,若點E的縱坐標為-1,拋物線(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖①,在?ABCD中,AB=13,BC=50,BC邊上的高為12.點P從點B出發(fā),沿B﹣A﹣D﹣A運動,沿B﹣A運動時的速度為每秒13個單位長度,沿A﹣D﹣A運動時的速度為每秒8個單位長度.點Q從點 B出發(fā)沿BC方向運動,速度為每秒5個單位長度.P、Q兩點同時出發(fā),當點Q到達點C時,P、Q兩點同時停止運動.設(shè)點P的運動時間為t(秒).連結(jié)PQ.

(1)當點P沿A﹣D﹣A運動時,求AP的長(用含t的代數(shù)式表示).
(2)連結(jié)AQ,在點P沿B﹣A﹣D運動過程中,當點P與點B、點A不重合時,記△APQ的面積為S.求S與t之間的函數(shù)關(guān)系式.
(3)過點Q作QR∥AB,交AD于點R,連結(jié)BR,如圖②.在點P沿B﹣A﹣D運動過程中,當線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時t的值.
(4)設(shè)點C、D關(guān)于直線PQ的對稱點分別為C′、D′,直接寫出C′D′∥BC時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).

(1)求點B,C的坐標;
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,拋物線經(jīng)過點A(,0)和點B(1,),與x軸的另一個交點為C.
(1)求拋物線的函數(shù)表達式;
(2)點D在對稱軸的右側(cè),x軸上方的拋物線上,且∠BDA=∠DAC,求點D的坐標;
(3)在(2)的條件下,連接BD,交拋物線對稱軸于點E,連接AE.
①判斷四邊形OAEB的形狀,并說明理由;
②點F是OB的中點,點M是直線BD的一個動點,且點M與點B不重合,當∠BMF=∠MFO時,請直接寫出線段BM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知:△ABC為邊長是的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點C與點E重合,點B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個單位長度的速度沿EF方向向右勻速運動,當點C與點F重合時暫停運動,設(shè)△ABC的運動時間為t秒(t≥0).

(1)在整個運動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式;
(2)如圖2,當點A與點D重合時,作∠ABE的角平分線BM交AE于M點,將△ABM繞點A逆時針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點,使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.
(3)如圖3,若四邊形DEFG為邊長為的正方形,△ABC的移動速度為每秒個單位長度,其余條件保持不變.△ABC開始移動的同時,Q點從F點開始,沿折線FG﹣GD以每秒個單位長度開始移動,△ABC停止運動時,Q點也停止運動.設(shè)在運動過程中,DE交折線BA﹣AC于P點,則是否存在t的值,使得PC⊥EQ,若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線的頂點A(2,0),與y軸的交點為B(0,-1).

(1)求拋物線的解析式;
(2)在對稱軸右側(cè)的拋物線上找出一點C,使以BC為直徑的圓經(jīng)過拋物線的頂點A.并求出點C的坐標以及此時圓的圓心P點的坐標.
(3)在(2)的基礎(chǔ)上,設(shè)直線x=t(0<t<10)與拋物線交于點N,當t為何值時,△BCN的面積最大,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,反比例函數(shù)(x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別于AB、BC交于點D、E,若四邊形ODBE的面積為9,則k的值為(  。
A.1        B.2          C.3           D.4

查看答案和解析>>

同步練習冊答案