【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(14)和(4, 4),拋物線的頂點(diǎn)在線段AB上運(yùn)動(dòng),與x軸交于C、D兩點(diǎn)(CD的左側(cè)),點(diǎn)C的橫坐標(biāo)最小值為,則點(diǎn)D的橫坐標(biāo)最大值為_______。

【答案】8

【解析】試題分析:當(dāng)C點(diǎn)橫坐標(biāo)最小時(shí),拋物線頂點(diǎn)必為A1,4),根據(jù)此時(shí)拋物線的對(duì)稱軸,可判斷出CD間的距離;當(dāng)D點(diǎn)橫坐標(biāo)最大時(shí),拋物線頂點(diǎn)為B4,4),再根據(jù)此時(shí)拋物線的對(duì)稱軸及CD的長(zhǎng),可判斷出D點(diǎn)橫坐標(biāo)最大值.

試題解析:當(dāng)點(diǎn)C橫坐標(biāo)為-3時(shí),拋物線頂點(diǎn)為A14),對(duì)稱軸為x=1,此時(shí)D點(diǎn)橫坐標(biāo)為5,則CD=8

當(dāng)拋物線頂點(diǎn)為B4,4)時(shí),拋物線對(duì)稱軸為x=4,且CD=8,故C00),D8,0);

由于此時(shí)D點(diǎn)橫坐標(biāo)最大,

故點(diǎn)D的橫坐標(biāo)最大值為8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在矩形ABCD中,∠ADC的平分線DE與BC邊所在的直線交于點(diǎn)E,點(diǎn)P是線段DE上一定點(diǎn)(其中EP<PD)

(1)如圖1,若點(diǎn)F在CD邊上(不與D重合),將∠DPF繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,角的兩邊PD、PF分別交射線DA于點(diǎn)H、G.

①求證:PG=PF; ②探究:DF、DG、DP之間有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.

(2)拓展:如圖2,若點(diǎn)F在CD的延長(zhǎng)線上(不與D重合),過(guò)點(diǎn)P作PG⊥PF,交射線DA于點(diǎn)G,你認(rèn)為(1)中DF、DG、DP之間的數(shù)量關(guān)系是否仍然成立?若成立,給出證明;若不成立,請(qǐng)寫出它們所滿足的數(shù)量關(guān)系式,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC, ,點(diǎn)E是BC的中點(diǎn),連接AE、BD.若EA⊥AB,BC=26,DC=12,求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列選項(xiàng)中,可以用來(lái)說(shuō)明命題“兩個(gè)銳角的和是銳角”是假命題的反例的是(
A.∠A=30°,∠B=40°
B.∠A=30°,∠B=110°
C.∠A=30°,∠B=70°
D.∠A=30°,∠B=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求不等式(2x-1)(x+3)>0的解集.
解:根據(jù)“同號(hào)兩數(shù)相乘,積為正”,可得① 或② 解①得x> ;解②得x<-3.
所以原不等式的解集為x> 或x<-3.
請(qǐng)你仿照上述方法解決問(wèn)題:
(1)求不等式(2x-3)(x+1)<0的解集;
(2)求不等式 ≥0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1和∠2互余,∠2和∠3互補(bǔ),∠1=63°,∠3=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(x22﹣(x3)(x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)正方形和兩個(gè)等邊三角形的位置如圖所示,若∠3=50°,則∠1+∠2=(

A.90°
B.100°
C.130°
D.180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,P是△ABC內(nèi)一點(diǎn),且PA=3,PB=1,PC=2,求∠BPC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案