【題目】已知(如圖),點分別在邊上,且四邊形是菱形

1)請使用直尺與圓規(guī),分別確定點的具體位置(不寫作法,保留畫圖痕跡);

2)如果,點在邊上,且滿足,求四邊形的面積;

3)當時,求的值。

【答案】1)詳見解析;(2;(3

【解析】

1)作ABC的角平分線AE,作線段AE的垂直平分線交ABD,交ACF,連接DE、EF,四邊形ADEF即為所求;

2)由題意,當∠A=60°AD=4時,ADF,EFD,EMD都是等邊三角形,邊長為4,由此即可解決問題;

3)利用三角形的中位線定理即可解決問題.

1D,E,F的位置如圖所示.

2)由題意,當∠A=60°,AD=4時,ADF,EFDEMD都是等邊三角形,邊長為4,

S四邊形AFEM=3××42=12;

3)當AB=AC時,易知DEABC的中位線,

DE=AC

=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y= x+2與雙曲線相交于點A(m,3),與x軸交于點C.

(1)求雙曲線解析式;
(2)點P在x軸上,如果△ACP的面積為3,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

(1)求y關于x的函數(shù)關系式;

(2)該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?

(3)實際進貨時,廠家對A型電腦出廠價下調a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題的逆命題成立的有( )

勾股數(shù)是三個正整數(shù) 全等三角形的三條對應邊分別相等

如果兩個實數(shù)相等,那么它們的平方相等 平行四邊形的兩組對角分別相等

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長線于點E.

(1)求∠CBE的度數(shù);

(2)過點DDFBE,交AC的延長線于點F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,所有正方形的中心均在坐標原點,且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8 …,頂點依次為A1,A2,A3,A4,A5,…,則頂點A55的坐標是( )

A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1+2180°,∠3B,

1)證明:EFAB

2)試判斷∠AED與∠C的大小關系,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在圓心角為135°的扇形OAB中,半徑OA=2cm,點C,D為 的三等分點,連接OC,OD,AC,CD,BD,則圖中陰影部分的面積為cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售產(chǎn)品A,第一批產(chǎn)品A上市40天內(nèi)全部售完.該商場對第一批產(chǎn)品A上市后的銷售情況進行了跟蹤調查,調查結果如圖所示:圖①中的折線表示日銷售量w與上市時間t的關系;圖②中的折線表示每件產(chǎn)品A的銷售利潤y與上市時間t的關系.

1)觀察圖①,試寫出第一批產(chǎn)品A的日銷售量w與上市時間t的關系;

2)第一批產(chǎn)品A上市后,哪一天這家商店日銷售利潤Q最大?日銷售利潤Q最大是多少元?(日銷售利潤=每件產(chǎn)品A的銷售利潤×日銷售量)

查看答案和解析>>

同步練習冊答案