【題目】某公司在銷(xiāo)售一種產(chǎn)品進(jìn)價(jià)為10元的產(chǎn)品時(shí),每年總支出為10萬(wàn)元(不含進(jìn)貨支出).經(jīng)過(guò)若干年銷(xiāo)售得知,年銷(xiāo)售量 (萬(wàn)件)是銷(xiāo)售單價(jià) (元)的一次函數(shù),并得到如下部分?jǐn)?shù)據(jù):
銷(xiāo)售單價(jià) (元) | 12 | 14 | 16 | 18 |
年銷(xiāo)售量(萬(wàn)件) | 7 | 6 | 5 | 4 |
(1)求出關(guān)于的函數(shù)關(guān)系式;
(2)寫(xiě)出該公司銷(xiāo)售這種產(chǎn)品的年利潤(rùn) (萬(wàn)元)關(guān)于銷(xiāo)售單價(jià) (元)的函數(shù)關(guān)系式;當(dāng)銷(xiāo)售單價(jià)為何值時(shí),年利潤(rùn)最大?
(3)試通過(guò)(2)中的函數(shù)關(guān)系式及其大致圖象,幫助該公司確定產(chǎn)品的銷(xiāo)售單價(jià)范圍,使年利潤(rùn)不低于20萬(wàn)元(請(qǐng)直接寫(xiě)出銷(xiāo)售單價(jià)的范圍).
【答案】(1)y ;(2)當(dāng)x=18時(shí),年利潤(rùn)最大;(3) .
【解析】分析:(1)根據(jù)表中的已知點(diǎn)的坐標(biāo)利用待定系數(shù)法確定一次函數(shù)的解析式即可;(2)根據(jù)總利潤(rùn)=單件利潤(rùn)×銷(xiāo)量列出函數(shù)關(guān)系式,化為頂點(diǎn)式即可確定最值;
(3)令利潤(rùn)大于等于20,求得相應(yīng)的自變量取值范圍,即可解答本題.
本題解析:(1)設(shè)y=kx+b,
∵(16,5),(18,4)在此一次函數(shù)的圖象上,
∴ ,
解得,
故y關(guān)于x的函數(shù)關(guān)系式是:y=x+13;
故答案為:y=x+13;
(2)∵該公司年利潤(rùn)w=(x+13)(x10)10= (x18)+22,
∴當(dāng)x=18時(shí),該公司年利潤(rùn)最大值為22萬(wàn)元,
即該公司銷(xiāo)售這種產(chǎn)品的年利潤(rùn)w(萬(wàn)元)關(guān)于銷(xiāo)售單價(jià)x(元)的函數(shù)關(guān)系式是:
w= (x18)+22,當(dāng)銷(xiāo)售單價(jià)x為18時(shí),年利潤(rùn)最大;
(3)年利潤(rùn)不低于20萬(wàn)元時(shí)x的取值范圍是:16x20,
理由:∵ (x18)2+2220
解得:16x20.
即年利潤(rùn)不低于20萬(wàn)元時(shí)x的取值范圍是:16x20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,,,把一條長(zhǎng)為2016個(gè)單位長(zhǎng)度且沒(méi)有彈性的細(xì)線線的粗細(xì)忽略不計(jì)的一端固定在點(diǎn)A處,并按的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(-3,2).
(1)直接寫(xiě)出點(diǎn)E的坐標(biāo) ;
(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿BC→CD移動(dòng).若點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)解決以下問(wèn)題,并說(shuō)明你的理由:
①當(dāng)t為多少秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
②在運(yùn)動(dòng)過(guò)程中的坐標(biāo)(用含t的式子表示)
③當(dāng)3秒<t<5秒時(shí),設(shè)∠CBP=,∠PAD=,∠BPA=,試問(wèn)是否為定值,若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明的爸爸去參加一個(gè)重要會(huì)議,小明坐在汽車(chē)上用所學(xué)知識(shí)繪制了一張反映小車(chē)速度與時(shí)間的關(guān)系圖,第二天,小明拿著這張圖給同學(xué)看,并向同學(xué)提出如下問(wèn)題,你能回答嗎?
(1)在上述變化過(guò)程中,圖象表示了那兩個(gè)變量的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?
(2)小車(chē)共行駛了多少時(shí)間?最高時(shí)速是什么?停止了幾分鐘?
(3)小車(chē)在哪段時(shí)間保持勻速行駛?勻速行駛了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°,點(diǎn)C、D分別在邊OA、OB上的點(diǎn).連接AD,BC,點(diǎn)H為BC中點(diǎn),連接OH.
(1)如圖1,求證:OH=AD,OH⊥AD;
(2)將△COD繞點(diǎn)O旋轉(zhuǎn)到圖2所示位置時(shí),⑴中結(jié)論是否仍成立?若成立,證明你的結(jié)論;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn)是線段上一點(diǎn),,.
(1)若是的高線,且,求的長(zhǎng).
(2)若是的角平分線,,求出的面積.
(3)填空:若是的中線,設(shè)長(zhǎng)為,則的取值范圍______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線與x軸相交于點(diǎn)A(-2,0)、B(4,0),與y軸交于點(diǎn)C(0,-4),BC與拋物線的對(duì)稱(chēng)軸相交于點(diǎn)D.
(1)求該拋物線的表達(dá)式,并直接寫(xiě)出點(diǎn)D的坐標(biāo);
(2)過(guò)點(diǎn)A作AE⊥AC交拋物線于點(diǎn)E,求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,點(diǎn)F在射線AE上,若△ADF∽△ABC,求點(diǎn)F 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有大小兩種貨車(chē),3輛大貨車(chē)與2輛小貨車(chē)一次可以運(yùn)貨21噸,2輛大貨車(chē)與4輛小貨車(chē)一次可以運(yùn)貨22噸.
(1)每輛大貨車(chē)和每輛小貨車(chē)一次各可以運(yùn)貨多少?lài)崳?/span>
(2)現(xiàn)有這兩種貨車(chē)共10輛,要求一次運(yùn)貨不低于35噸,則其中大貨車(chē)至少多少輛?(用不等式解答)
(3)日前有23噸貨物需要運(yùn)輸,欲租用這兩種貨車(chē)運(yùn)送,要求全部貨物一次運(yùn)完且每輛車(chē)必須裝滿.已知每輛大貨車(chē)一次運(yùn)貨租金為300元,每輛小貨車(chē)一次運(yùn)貨租金為200元,請(qǐng)列出所有的運(yùn)輸方案井求出最少租金.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形的對(duì)角線所成的角之一是65°,則對(duì)角線與各邊所成的角度是( �。�
A. 57.5° B. 32.5° C. 57.5°,23.5° D. 57.5°,32.5°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com