【題目】如圖,在△ABC中,∠ABC=90°,BE⊥AC于點(diǎn)E,點(diǎn)D在AC上,且AD=AB,AK平分∠CAB,交線段BE于點(diǎn)F,交邊CB于點(diǎn)K.
(1)在圖中找出一對全等三角形,并證明;
(2)求證:FD∥BC .
【答案】(1)△ADF≌△ABF;(2)證明見解析
【解析】試題分析:(1)由AK平分∠CAB,可得∠DAF=∠BAF,再由AD=AB,AF=AF,利用SAS即可判定△ADF≌△ABF;(2)由△ADF≌△ABF,可得∠ADF=∠ABF,再由∠CAB+∠C=90°,∠CAB+∠ABF =90°,可得∠ABF =∠C,即可得∠ADF=∠C,根據(jù)同位角相等,兩直線平行即可判定FD∥BC .
試題解析:
(1)△ADF≌△ABF,
∵AK平分∠CAB,∴∠DAF=∠BAF,
在△ADF和△ABF中,
,
∴△ADF≌△ABF;
(2)∵△ADF≌△ABF,
∴∠ADF=∠ABF,
∵∠ABC=90°,BE⊥AC于點(diǎn)E,
∴∠CAB+∠C=90°,∠CAB+∠ABF =90°,
∴∠ABF =∠C,
∴∠ADF=∠C,
∴FD∥BC .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,坐標(biāo)原點(diǎn)O為矩形ABCD的對稱中心,頂點(diǎn)A的坐標(biāo)為(1,t),AB∥x軸,矩形A′B′C′D′與矩形ABCD是位似圖形,點(diǎn)O為位似中心,點(diǎn)A′,B′分別是點(diǎn)A,B的對應(yīng)點(diǎn),.已知關(guān)于x,y的二元一次方程(m,n是實(shí)數(shù))無解,在以m,n為坐標(biāo)(記為(m,n)的所有的點(diǎn)中,若有且只有一個點(diǎn)落在矩形A′B′C′D′的邊上,則kt的值等于( )
A. B.1 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍(lán)球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為
(1)求口袋中黃球的個數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個小球(不放回),再隨機(jī)摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;
(3)現(xiàn)規(guī)定:摸到紅球得5分,摸到黃球得3分,摸到藍(lán)球得2分(每次摸后放回),乙同學(xué)在一次摸球游戲中,第一次隨機(jī)摸到一個紅球第二次又隨機(jī)摸到一個藍(lán)球,若隨機(jī)再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于10分的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CN是等邊△的外角內(nèi)部的一條射線,點(diǎn)A關(guān)于CN的對稱點(diǎn)為D,連接AD,BD,CD,其中AD,BD分別交射線CN于點(diǎn)E,P.
(1)依題意補(bǔ)全圖形;
(2)若,求的大。ㄓ煤的式子表示);
(3)用等式表示線段, 與之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于0,1以及真分?jǐn)?shù)p,q,r,若p<q<r,我們稱q為p和r的中間分?jǐn)?shù).為了幫助我們找中間分?jǐn)?shù),制作了下表:
兩個不等的正分?jǐn)?shù)有無數(shù)多個中間分?jǐn)?shù).例如:上表中第③行中的3個分?jǐn)?shù)、、,有,所以為和的一個中間分?jǐn)?shù),在表中還可以找到和的中間分?jǐn)?shù), , , .把這個表一直寫下去,可以找到和更多的中間分?jǐn)?shù).
(1)按上表的排列規(guī)律,完成下面的填空:
①上表中括號內(nèi)應(yīng)填的數(shù)為 ;
②如果把上面的表一直寫下去,那么表中第一個出現(xiàn)的和的中間分?jǐn)?shù)是 ;
(2)寫出分?jǐn)?shù)和(a、b、c、d均為正整數(shù), , )的一個中間分?jǐn)?shù)(用含a、b、c、d的式子表示),并證明;
(3)若與(m、n、s、 t均為正整數(shù))都是和的中間分?jǐn)?shù),則的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料
小明遇到這樣一個問題:求計算所得多項式的一次項系數(shù).
小明想通過計算所得的多項式解決上面的問題,但感覺有些繁瑣,他想探尋一下,是否有相對簡潔的方法.
他決定從簡單情況開始,先找所得多項式中的一次項系數(shù).通過觀察發(fā)現(xiàn):
也就是說,只需用中的一次項系數(shù)1乘以中的常數(shù)項3,再用中的常數(shù)項2乘以中的一次項系數(shù)2,兩個積相加,即可得到一次項系數(shù).
延續(xù)上面的方法,求計算所得多項式的一次項系數(shù).可以先用的一次項系數(shù)1, 的常數(shù)項3, 的常數(shù)項4,相乘得到12;再用的一次項系數(shù)2, 的常數(shù)項2, 的常數(shù)項4,相乘得到16;然后用的一次項系數(shù)3, 的常數(shù)項2, 的常數(shù)項3,相乘得到18.最后將12,16,18相加,得到的一次項系數(shù)為46.
參考小明思考問題的方法,解決下列問題:
(1)計算所得多項式的一次項系數(shù)為 .
(2)計算所得多項式的一次項系數(shù)為 .
(3)若計算所得多項式的一次項系數(shù)為0,則=_________.
(4)若是的一個因式,則的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面墻(墻EF最長可利用28米),圍成一個矩形花園ABCD.與墻平行的一邊BC上要預(yù)留2米寬的入口(如圖中MN所示,不用砌墻).現(xiàn)有砌60米長的墻的材料.
(1)當(dāng)矩形的長BC為多少米時,矩形花園的面積為300平方米;
(2)能否圍成480平方米的矩形花園,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(齊齊哈爾中考)如圖所示,在四邊形ABCD中.
(1)畫出四邊形A1B1C1D1,使四邊形A1B1C1D1與四邊形ABCD關(guān)于直線MN成軸對稱;
(2)畫出四邊形A2B2C2D2,使四邊形A2B2C2D2與四邊形ABCD關(guān)于點(diǎn)O中心對稱.
(3)四邊形A1B1C1D1與四邊形A2B2C2D2是否對稱,若對稱請在圖中畫出對稱軸或?qū)ΨQ中心.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表所示為裝運(yùn)、銷售甲、乙、丙三種蔬菜的重量及利潤。某公司計劃用20輛汽車裝運(yùn)甲、乙、丙三種蔬菜共36噸到某地銷售.規(guī)定每輛汽車滿載,每車只裝一種蔬菜,每種蔬菜不少于一車。應(yīng)如何安排,可使公司獲得利潤18300元?
甲 | 乙 | 丙 | |
每輛汽車裝運(yùn)的噸數(shù) | 2 | 1 | 1.5 |
每噸蔬菜可獲利潤(百元) | 5 | 7 | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com