如圖,拋物線y=-x2+x-2交x軸于A,B兩點(點A在點B的左側),交y軸于點C,分別過點B,C作y軸,x軸的平行線,兩平行線交于點D,將△BDC繞點C逆時針旋轉,使點D旋轉到y(tǒng)軸上得到△FEC,連接BF.
(1)求點B,C所在直線的函數(shù)解析式;
(2)求△BCF的面積;
(3)在線段BC上是否存在點P,使得以點P,A,B為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.
(1)直線BC的解析式為y=x﹣3;
(2)△BCF的面積為10;
(3)在線段BC上存在點P,使得以點P,A,B為頂點的三角形與△BOC相似, P點坐標為(2,﹣1)或(,﹣).
【解析】
試題分析:(1)根據(jù)坐標軸上點的坐標特征可得點B,C的坐標,再根據(jù)待定系數(shù)法可得點B,C所在直線的函數(shù)解析式;
(2)根據(jù)勾股定理可得BC的長,根據(jù)旋轉的性質和三角形面積公式即可求解;
(3)存在.分兩種情況討論:①過A作AP1⊥x軸交線段BC于點P1,則△BAP1∽△BOC;②過A作AP2⊥BC,垂足點P2,過點P2作P2Q⊥x軸于點Q.則△BAP2∽△BCO;依此討論即可求解.
試題解析:(1)當y=0時,﹣x2+x﹣2=0,
解得x1=2,x2=4,
∴點A,B的坐標分別為(2,0),(4,0),
當x=0時,y=﹣2,
∴C點的坐標分別為(0,﹣2),
設直線BC的解析式為y=kx+b(k≠0),則,
解得.
∴直線BC的解析式為y=x﹣3;
(2)∵CD∥x軸,BD∥y軸,
∴∠ECD=90°,
∵點B,C的坐標分別為(4,0),(0,﹣2),
∴BC==2,
∵△FEC是由△BDC繞點C逆時針旋轉得到,
∴△BCF的面積=BC•FC=×2×2=10;
(3)存在.分兩種情況討論:
①過A作AP1⊥x軸交線段BC于點P1,則△BAP1∽△BOC,
∵點A的坐標為(2,0),
∴點P1的橫坐標是2,
∵點P1在點BC所在直線上,
∴y=x﹣2=×2﹣2=﹣1,
∴點P1的坐標為(2,﹣1);
②過A作AP2⊥BC,垂足點P2,過點P2作P2Q⊥x軸于點Q.
∴△BAP2∽△BCO,
∴,
∴,
解得AP2=,
∵,
∴AP2•BP=CO•BP2,
∴×4=2BP2,
解得BP2=,
∵AB•QP2=AP2•BP2,
∴2QP2=×,
解得QP2=,
∴點P2的縱坐標是﹣,
∵點P2在BC所在直線上,
∴x=,
∴點P2的坐標為(,﹣),
∴滿足條件的P點坐標為(2,﹣1)或(,﹣).
考點:二次函數(shù)綜合題.
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(黑龍江牡丹江卷)數(shù)學(解析版) 題型:填空題
⊙O的半徑為2,弦BC=2,點A是⊙O上一點,且AB=AC,直線AO與BC交于點D,則AD的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(黑龍江大慶卷)數(shù)學(解析版) 題型:選擇題
下列式子中成立的是( 。
A.-|-5|>4 B.-3<|-3| C.-|-4|=4 D.|- 5.5|<5
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(黑龍江哈爾濱卷)數(shù)學(解析版) 題型:選擇題
在反比例函數(shù)的圖象的每一條曲線上,y都隨x的增大而減小,則k的取值范圍是( 。
A.k>1 B.k>0 C.k≥1 D.k<1
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(青海西寧卷)數(shù)學(解析版) 題型:解答題
如圖,已知?ABCD水平放置在平面直角坐標系xOy中,若點A,D的坐標分別為(-2,5),(0,1),點B(3,5)在反比例函數(shù)y=(x>0)圖象上.
(1)求反比例函數(shù)y=的解析式;
(2)將?ABCD沿x軸正方向平移10個單位后,能否使點C落在反比例函數(shù)y=的圖象上?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(重慶A卷)數(shù)學(解析版) 題型:解答題
如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標;
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=DQ,求點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(遼寧阜新卷)數(shù)學(解析版) 題型:選擇題
與在平面直角坐標系中的位置如圖所示,它們關于點成中心對稱,其中點,則點的坐標是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com