【題目】如圖,在梯形ABCD中,AD∥BC,∠B=45°,AD=8,AB=,CD=26,求BC的長.
【答案】42.
【解析】作AE⊥BC,DF⊥BC,垂足分別為E、F,由此可得出四邊形AEFD是矩形,在Rt△ABE中利用勾股定理可求出AE的長,在Rt△DFC中利用勾股定理可求出FC的長,再根據(jù)線段之間的關系即可得出BC的長.
解:作AE⊥BC,DF⊥BC,垂足分別為E、F,如圖所示.
∵AE⊥BC,DF⊥BC,
∴∠AEF=∠DFE=90°,AE∥DF.
∵AD∥BC,
∴四邊形AEFD是矩形,
∴AE=DF,AD=EF=8.
在Rt△ABE中,由∠B=45°,得AE=BE
∴,
∴AE=BE=10,
∴DF=10.
在Rt△DFC中,由DF=10,CD=26,
∴FC==24,
∴BC=BE+EF+FC=42.
“點睛”本題考查了條形的性質即直角三角形的性質,屬于基礎題,關鍵將作為的知識結合,做題時融會貫通.
科目:初中數(shù)學 來源: 題型:
【題目】矩形中, ,以為邊向上作正, 、分別交于、, ,兩動點、運動速度分別為4、 ().
(1)的長為 ;
(2)若點從出發(fā)沿線段向運動,同時點從出發(fā)沿線段向點運動,設運動時間為,在運動過程中,以、、為頂點的三角形和以、、為頂點的三角形全等,求的運動速度;
(3)若點以(2)中的速度從點出發(fā),同時點以原來的速度從點出發(fā),逆時針沿四邊形運動.問、會不會相遇?若不相遇,說明理由.若相遇,請求出經過多長時間、第一次在四邊形的何處相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=3x+3與x軸交于點A,與y軸交于點C,過點C的直線y=﹣x+b與x軸交于點B.
(1)b的值為______;
(2)若點D的坐標為(0,﹣1),將△BCD沿直線BC對折后,點D落到第一象限的點E處,求證:四邊形ABEC是平行四邊形;
(3)在直線BC上是否存在點P,使得以P、A、D、B為頂點的四邊形是平行四邊形?如果存在,請求出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知3是關于x的方程x2-(m+1)x+2m=0的一個實數(shù)根,并且這個方程的兩個實數(shù)根恰好是等腰△ABC的兩條邊的邊長,則△ABC的周長為( )
A. 7 B. 10 C. 11 D. 10或11
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O直徑,E為⊙O上一點,∠EAB的平分線AC交⊙O于C點,過C點作CD⊥AE的延長線于D點,直線CD與射線AB交于P點.
(1)求證:DC為⊙O切線;
(2)若DC=1,AC=,①求⊙O半徑長;②求PB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若多項式﹣6ab+18abc+24ab2的一個因式是﹣6ab,則其余的因式是( 。
A. 1﹣3c﹣4b B. ﹣1﹣3c+4b C. 1+3c﹣4b D. ﹣1﹣3c﹣4b
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】方成同學看到一則材料:甲開汽車,乙騎自行車從M地出發(fā)沿一條公路勻速前往N地.設乙行駛的時間為t(h),甲乙兩人之間的距離為y(km),y與t的函數(shù)關系如圖1所示.
方成思考后發(fā)現(xiàn)了如圖1的部分正確信息:乙先出發(fā)1h;甲出發(fā)0.5小時與乙相遇.
請你幫助方成同學解決以下問題:
(1)分別求出線段BC,CD所在直線的函數(shù)表達式;
(2)當20<y<30時,求t的取值范圍;
(3)分別求出甲,乙行駛的路程S甲,S乙與時間t的函數(shù)表達式,并在圖2所給的直角坐標系中分別畫出它們的圖象;
(4)丙騎摩托車與乙同時出發(fā),從N地沿同一公路勻速前往M地,若丙經過h與乙相遇,問丙出發(fā)后多少時間與甲相遇?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com