【題目】如圖,正方形ABCD的邊長為2,點(diǎn)E是BC的中點(diǎn),AE與BD交于點(diǎn)P,F是CD上的一點(diǎn),連接AF分別交BD,DE于點(diǎn)M,N,且AF⊥DE,連接PN,則下列結(jié)論中:
①;②;③tan∠EAF=;④正確的是()
A. ①②③B. ①②④C. ①③④D. ②③④
【答案】A
【解析】
利用正方形的性質(zhì),得出∠DAN=∠EDC,CD=AD,∠C=∠ADF即可判定△ADF≌△DCE(ASA),再證明△ABM∽△FDM,即可解答①;根據(jù)題意可知:AF=DE=AE=,再根據(jù)三角函數(shù)即可得出③;作PH⊥AN于H.利用平行線的性質(zhì)求出AH=,即可解答②;利用相似三角形的判定定理,即可解答④
解:∵正方形ABCD的邊長為2,點(diǎn)E是BC的中點(diǎn),
∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,
∵AF⊥DE,
∴∠DAF+∠ADN=∠ADN+∠CDE=90°,
∴∠DAN=∠EDC,
在△ADF與△DCE中, ,
∴△ADF≌△DCE(ASA),
∴DF=CE=1,
∵AB∥DF,
∴△ABM∽△FDM,
∴,
∴S△ABM=4S△FDM;故①正確;
根據(jù)題意可知:AF=DE=AE=,
∵ ×AD×DF=×AF×DN,
∴DN= ,
∴EN=,AN=,
∴tan∠EAF=,故③正確,
作PH⊥AN于H.
∵BE∥AD,
∴,
∴PA=,
∵PH∥EN,
∴,
∴AH=,
∴PH=
∴PN=,故②正確,
∵PN≠DN,
∴∠DPN≠∠PDE,
∴△PMN與△DPE不相似,故④錯誤.
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=BC,以BC為直徑作⊙O,AC交⊙O于點(diǎn)E,過點(diǎn)E作EG⊥AB于點(diǎn)F,交CB的延長線于點(diǎn)G.
(1)求證:EG是⊙O的切線;
(2)若GF=2,GB=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】遠(yuǎn)遠(yuǎn)在一個不透明的盒子里裝了4個除顏色外其他都相同的小球,其中有3個是紅球,1個是綠球,每次拿一個球然后放回去,拿2次,則至少有一次取到綠球的概率是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某商品的進(jìn)價(jià)為每件40元.現(xiàn)在的售價(jià)是每件60元.每星期可賣出300件.市場調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)一元.每星期要少賣出10件;每降價(jià)一元,每星期可多賣出18件.如何定價(jià)才能使利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖所示的兩幅尚不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
扇形統(tǒng)計(jì)圖
條形統(tǒng)計(jì)圖
(1)接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“不了解”部分所對應(yīng)扇形的圓心角度數(shù)為_______,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若該中學(xué)共有學(xué)生人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為_______人;
(3)若從對校園安全知識達(dá)到“了解”程度的,,個女生和,個男生中隨機(jī)抽取人參加校園安全知識競賽,請用畫樹狀圖法或列表法求出恰好抽到個男生和個女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于點(diǎn).
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)是線段上方的拋物線上一個動點(diǎn),求的面積的最大值;
(3)點(diǎn)是拋物線的對稱軸上一個動點(diǎn),當(dāng)以為頂點(diǎn)的三角形是直角三角形時,求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸相交于、兩點(diǎn)(在的左側(cè)),與軸相交于點(diǎn)C(0,3),且,,拋物線的頂點(diǎn)為.
(1)求、兩點(diǎn)的坐標(biāo).
(2)求拋物線的表達(dá)式.
(3)過點(diǎn)作直線軸,交軸于點(diǎn),點(diǎn)是拋物線上,兩點(diǎn)間的一個動點(diǎn)(點(diǎn)不與、兩點(diǎn)重合),、與直線分別相交于點(diǎn)、當(dāng)點(diǎn)運(yùn)動時,是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,,,拋物線過點(diǎn),頂點(diǎn)位于第一象限且在線段的垂直平分線上,若拋物線與線段無公共點(diǎn),則的取值范圍是( )
A.B.或C.D.或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,與的AC邊相切于點(diǎn)C,與AB、BC邊分別交于點(diǎn)D、E,,CE是的直徑.
(1)求證:AB是的切線;
(2)若求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com