如圖,△ABC中,∠ACB=90°,AC=BC,CO為中線.現(xiàn)將一直角三角板的直角頂點放在點O上并繞點O旋轉(zhuǎn),若三角板的兩直角邊分別交AC,CB的延長線于點G,H.
(1)試寫出圖中除AC=BC,OA=OB=OC外其他所有相等的線段;
(2)請任選一組你寫出的相等線段給予證明.
我選擇證明______=______.
(1)CG=BH,AG=CH,OG=OH.(3分)(每寫對一組給1分)

(2)∵∠ACB=90°,AC=BC,AO=BO,
∴CO=OB,CO⊥AB,∠ABC=45°.(4分)
∵∠COG+∠GOB=90°,∠BOH+∠GOB=90°,
∴∠COG=∠BOH.(5分)
又∵∠ABC=∠OCB=45°,
∴∠OBH=180°-45°=135°,∠GCO=90°+45°=135°,
∴∠GCO=∠OBH.(6分)
(利用等角的補(bǔ)角相等證∠GCO=∠OBH比照給分)
∴△GCO≌△HBO,(7分)
∴CG=BH.(8分)
證其他兩組線段相等比照給分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點O是等邊三角形ABC內(nèi)一點,∠AOB=100°,∠BOC=α.把△BOC繞點C按逆時針方向旋轉(zhuǎn)60°得△ADC,連接OD.
(1)說明△COD是等邊三角形;
(2)填空:用α表示∠AOD的結(jié)果為______;用α表示∠ADO的結(jié)果為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,將△ABC繞點C逆時針旋轉(zhuǎn)至△A′B′C′,使得點A′恰好落在AB上,連接BB′,則BB′的長度為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABD經(jīng)過旋轉(zhuǎn)后到達(dá)△ACE的位置,下列說法不正確的是( 。
A.點A是旋轉(zhuǎn)中心B.∠DAC是一個旋轉(zhuǎn)角
C.AB=ACD.△ABD≌△ACE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是單位長度等于o的網(wǎng)格,點A、B、C都在格點上;
(o)畫出將圖△ABC繞點A逆時針旋轉(zhuǎn)90°的△AB′C′,(其中B、C對應(yīng)點分別是B′、C′);
(2)求點B運動過程中所經(jīng)過的弧長;
(3)求邊BC運動過程中所掃過的區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形網(wǎng)格中建立平面直角坐標(biāo)系,格點O為原點,格點A的坐標(biāo)為(-1,3).
(1)畫出點A關(guān)于y軸對稱的格點B,并寫出點B的坐標(biāo)(______,______);
(2)將線段OA繞著原點O順時針旋轉(zhuǎn)90°,點A落在格點C處,畫出線段OA掃過的平面區(qū)域(用陰影表示),則AC的長為______;
(3)過點C作AC的切線CD,D為格點,設(shè)直線CD的解析式為y=kx+b,y隨x的增大而______;(填“增大”或“減小”)
(4)連接BC,則tan∠BCD的值等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,平面直角坐標(biāo)系中,∠ABO=90°,將直角△AOB繞O點順時針旋轉(zhuǎn),使點B落在x軸上的點B1處,點A落在A1處,若B點的坐標(biāo)為(
16
5
12
5
),則點A1的坐標(biāo)是( 。
A.(3,-4)B.(4,-3)C.(5,-3)D.(3,-5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知:如圖,AB是⊙O的弦,OC⊥AB,垂足為D,⊙O的半徑為5,CD=2,那么AB的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在下面的網(wǎng)格圖中按要求畫出圖形,并回答問題:
(1)先畫出△ABC向下平移5格后的△A1B1C1,再畫出△ABC以點O為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的△A2B2C2;
(2)如圖,以點O為原點建立平面直角坐標(biāo)系,試寫出點A2,B1的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案