如圖,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,將△ABC繞點C逆時針旋轉(zhuǎn)至△A′B′C′,使得點A′恰好落在AB上,連接BB′,則BB′的長度為______.
∵Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,
∴A′C=AC=1,AB=2,BC=
3
,
∵∠A=60°,
∴△AA′C是等邊三角形,
∴AA′=
1
2
AB=1,
∴A′C=A′B,
∴∠A′CB=∠A′BC=30°,
∵△A′B′C是△ABC旋轉(zhuǎn)而成,
∴∠A′CB′=90°,BC=B′C,
∴∠B′CB=90°-30°=60°,
∴△BCB′是等邊三角形,
∴BB′=BC=
3

故答案為:
3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知△ABC三個頂點的坐標分別為A(-1,2),B(-3,4),C(-2,9).
(1)畫出△ABC及△ABC繞點A順時針旋轉(zhuǎn)90°后得到的△A1B1C1;
(2)寫出點B1的坐標;
(3)求出過點B1的反比例函數(shù)的解析式;
(4)求出從△ABC旋轉(zhuǎn)90°得到△A1B1C1的過程中點C所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,四邊形EFGH是由四邊形ABCD經(jīng)過旋轉(zhuǎn)得到的,如果用有序數(shù)對(2,1)表示方格紙上點A的位置,用(1,2)表示點B的位置,那四邊形ABCD旋轉(zhuǎn)得到四邊形EFGH時的旋轉(zhuǎn)中心用有序數(shù)對表示是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知O為直線AB上的一點,∠COE是直角,OF平分∠AOE.
(1)如圖1,若∠COF=34°,則∠BOE=______;若∠COF=n°,則∠BOE=______;∠BOE與∠COF的數(shù)量關系為______.
(2)當射線OE繞點O逆時針旋轉(zhuǎn)到如圖2的位置時,(1)中∠BOE與∠COF的數(shù)量關系是否仍然成立?如成立請寫出關系式;如不成立請說明理由.
(3)在圖3中,若∠COF=65°,在∠BOE的內(nèi)部是否存在一條射線OD,使得2∠BOD與∠AOF的和等于∠BOE與∠BOD的差的一半?若存在,請求出∠BOD的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,將四邊形ABCD稱為“基本圖形”,且各點的坐標分別為A(4,4),B(1,3),C(3,3),D(3,1).
(1)畫出“基本圖形”關于原點O對稱的四邊形A1B1C1D1,并求出A1,B1,C1,D1的坐標;
(2)畫出“基本圖形”關于x軸的對稱圖形A2B2C2D2;
(3)畫出四邊形A3B3C3D3,使之與前面三個圖形組成的圖形既是中心對稱圖形又是軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,△ABC是等邊三角形,D是BC邊上一點,△CDE也是等邊三角形,試利用旋轉(zhuǎn)的思想說明線段AD與BE的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,將等腰直角三角形ABC繞點A逆時針旋轉(zhuǎn)15°后得到△AB′C′,若AC=1,則圖中陰影部分的面積為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,∠ACB=90°,AC=BC,CO為中線.現(xiàn)將一直角三角板的直角頂點放在點O上并繞點O旋轉(zhuǎn),若三角板的兩直角邊分別交AC,CB的延長線于點G,H.
(1)試寫出圖中除AC=BC,OA=OB=OC外其他所有相等的線段;
(2)請任選一組你寫出的相等線段給予證明.
我選擇證明______=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

把一副三角板如圖甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6,DC=7,把三角板DCE繞點C順時針旋轉(zhuǎn)15°得到△D1CE1(如圖乙),此時AB與CD1交于點O,則線段AD1的長為(  )
A.3
2
B.5C.4D.
31

查看答案和解析>>

同步練習冊答案