【題目】如圖,平行四邊形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F(xiàn)是BC的中點,過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP:DQ等于( )
A.3:4
B. :2
C. :2
D.2 :
【答案】D
【解析】解:連接DE、DF,過F作FN⊥AB于N,過C作CM⊥AB于M, ∵根據(jù)三角形的面積和平行四邊形的面積得:S△DEC=S△DFA= S平行四邊形ABCD ,
即 AF×DP= CE×DQ,
∴AF×DP=CE×DQ,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∵∠DAB=60°,
∴∠CBN=∠DAB=60°,
∴∠BFN=∠MCB=30°,
∵AB:BC=3:2,
∴設(shè)AB=3a,BC=2a,
∵AE:EB=1:2,F(xiàn)是BC的中點,
∴BF=a,BE=2a,
BN= a,BM=a,
由勾股定理得:FN= a,CM= a,
AF= = a,
CE= =2 a,
∴ aDP=2 aDQ
∴DP:DQ=2 : .
故選:D.
連接DE、DF,過F作FN⊥AB于N,過C作CM⊥AB于M,根據(jù)三角形的面積和平行四邊形的面積得出S△DEC=S△DFA= S平行四邊形ABCD , 求出AF×DP=CE×DQ,設(shè)AB=3a,BC=2a,則BF=a,BE=2a,BN= a,BM=a,F(xiàn)N= a,CM= a,求出AF= a,CE=2 a,代入求出即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某地下商業(yè)街的入口,數(shù)學(xué)課外興趣小組的同學(xué)打算運用所學(xué)的知識測量側(cè)面支架的最高點E到地面的距離EF.經(jīng)測量,支架的立柱BC與地面垂直,即∠BCA=90°,且BC=1.5m,點F、A、C在同一條水平線上,斜桿AB與水平線AC的夾角∠BAC=30°,支撐桿DE⊥AB于點D,該支架的邊BE與AB的夾角∠EBD=60°,又測得AD=1m.請你求出該支架的邊BE及頂端E到地面的距離EF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點A(0,1),B(1,2),點P在x軸上運動,當(dāng)點P到A、B兩點距離之差的絕對值最大時,點P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司有甲種原料260kg,乙種原料270kg,計劃用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共40件.生產(chǎn)每件A種產(chǎn)品需甲種原料8kg,乙種原料5kg,可獲利潤900元;生產(chǎn)每件B種產(chǎn)品需甲種原料4kg,乙種原料9kg,可獲利潤1100元.設(shè)安排生產(chǎn)A種產(chǎn)品x件.
(1)完成下表
甲(kg) | 乙(kg) | 件數(shù)(件) | |
A | 5x | x | |
B | 4(40﹣x) | 40﹣x |
(2)安排生產(chǎn)A、B兩種產(chǎn)品的件數(shù)有幾種方案?試說明理由;
(3)設(shè)生產(chǎn)這批40件產(chǎn)品共可獲利潤y元,將y表示為x的函數(shù),并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面給出的正多邊形的邊長都是20cm,請分別按下列要求設(shè)計一種剪拼方法(用虛線表示你的設(shè)計方案,把剪拼線段用粗黑實線,在圖中標(biāo)注出必要的符號和數(shù)據(jù),并作簡要說明.
(1)將圖1中的正方形紙片剪拼成一個底面是正方形的直四棱柱模型,使它的表面積與原正方形面積相等;
(2)將圖2中的正三角形紙片剪拼成一個底面是正三角形的直三棱柱模型,使它的表面積與原正三角形的面積相等;
(3)將圖3中的正五邊形紙片剪拼成一個底面是正五邊形的直五棱柱模型,使它的表面積與原正五邊形的面積相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王大爺家有一塊梯形形狀土地,如圖,AD∥BC , 對角線AD , BC相交于點O , 王大爺量得AD長3米,BC長9米,王大爺準備在△AOD處種大白菜,那么王大爺種大白菜的面積與整個土地的面積比為( 。.
A.1:14
B.3:14
C.1:16
D.3:16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校課外生物小組的試驗園地是長35米、寬20米的矩形,為便于管理,現(xiàn)要在中間開辟一橫兩縱三條等寬的小道(如圖),要使種植面積為600平方米,求小道的寬.若設(shè)小道的寬為x米,則可列方程為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com