【題目】如圖,已知,,,.
(1)求證:;
(2)求證:.
【答案】(1)見解析;(2)見解析
【解析】
(1)根據(jù)垂直的定義和等式的基本性質(zhì)可得∠EAC=∠BAF,然后利用SAS即可證出;
(2)設(shè)AB與EC的交點為O,根據(jù)全等三角形的性質(zhì)可得∠AEC=∠ABF,然后根據(jù)對頂角相等可得∠AOE=∠BOM,再根據(jù)三角形的內(nèi)角和定理和等量代換即可求出∠OMB=90°,最后根據(jù)垂直的定義即可證明.
解:(1)∵,,
∴∠EAB=∠CAF=90°
∴∠EAB+∠BAC=∠CAF+∠BAC
∴∠EAC=∠BAF
在△AEC和△ABF中
∴(SAS)
(2)設(shè)AB與EC的交點為O,如下圖所示
∵
∴∠AEC=∠ABF
∵∠AOE=∠BOM
∴∠OMB=180°-∠ABF-∠BOM=180°-∠AEC-∠AOE=∠EAB=90°
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從寧?h到某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程與普通列車的行駛路程之和是920千米,而普通列車的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車的行駛路程;
(2)若高鐵的平均速度(千米/時)是普通列車的平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個矩形紙片OACB,將該紙片放置在平面直角坐標(biāo)系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP.設(shè)BP=t.
(Ⅰ)如圖①,當(dāng)∠BOP=300時,求點P的坐標(biāo);
(Ⅱ)如圖②,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)點C′恰好落在邊OA上時,求點P的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國宋朝數(shù)學(xué)家楊輝在他的著作《詳解九章算法》中提出如圖,此表揭示了(a+b)n(n為非負(fù)整數(shù))展開式的各項系數(shù)的規(guī)律,例如:(a+b)0=1,它只有一項,系數(shù)為1;(a+b)1=a+b,它有兩項,系數(shù)分別為1,1;(a+b)2=a2+2ab+b2,它有三項,系數(shù)分別為1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四項,系數(shù)分別為1,3,3,1;…;根據(jù)以上規(guī)律,(a+b)5展開式共有六項,系數(shù)分別為______,拓展應(yīng)用:(a﹣b)4=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,E是AB邊的中點,DE交AC于點F,AC、DE把它分成的四部分的面積分別為S1S2S3S4,下面結(jié)論:
①只有一對相似三角形
②EF:ED=1:2
③S1:S2:S3:S4=1:2:4:5
其中正確的結(jié)論是( )
A.①③ B.③ C.① D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是∠AOB內(nèi)任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當(dāng)△PMN周長取最小值時,則∠MPN的度數(shù)為( )
A. 140° B. 100° C. 50° D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市出租車計費(fèi)辦法如圖所示.根據(jù)圖象信息,下列說法錯誤的是( 。
A. 出租車起步價是10元
B. 在3千米內(nèi)只收起步價
C. 超過3千米部分(x>3)每千米收3元
D. 超過3千米時(x>3)所需費(fèi)用y與x之間的函數(shù)關(guān)系式是y=2x+4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com