【題目】如圖①,四邊形OABC是矩形,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)C的坐標(biāo)為(0,6),點(diǎn)P從點(diǎn)O出發(fā),沿線段OA以每秒1個(gè)單位長度的速度向點(diǎn)A移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),沿線段AB以每秒2個(gè)單位長度的速度向點(diǎn)B移動(dòng),當(dāng)點(diǎn)P與點(diǎn)A重合時(shí)移動(dòng)停止.設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒.

1)當(dāng)△CBQ與△PAQ相似時(shí),求t的值;

2)當(dāng)t1時(shí),拋物線yx2+bx+c經(jīng)過P,Q兩點(diǎn),與y軸交于點(diǎn)M,拋物線的頂點(diǎn)為K,如圖②所示,該拋物線上是否存在點(diǎn)D,使∠MQDMKQ?若存在,請求出所有滿足條件的點(diǎn)D的坐標(biāo);若不存在,請說明理由.

【答案】1tt;(2

【解析】

1)分△QBC∽△PAQ、△CBQ∽△PAQ,兩種情況分別求解;

2)先證明∠MKE=∠QKEMKQ,分①當(dāng)點(diǎn)D在直線MQ的上方時(shí),②當(dāng)點(diǎn)D在直線MQ的下方時(shí)兩種情況進(jìn)一步討論即可求解.

1)如圖①,∵當(dāng)點(diǎn)P與點(diǎn)A重合時(shí)運(yùn)動(dòng)停止,且△PAQ可以構(gòu)成三角形,

0t3

∵四邊形OABC是矩形,

∴∠B=∠PAQ90°

∴當(dāng)△CBQ與△PAQ相似時(shí),存在兩種情況:

①當(dāng)△QBC∽△PAQ時(shí),

,

4t215t+90

t13(舍),t2

②當(dāng)△CBQ∽△PAQ時(shí),

,

,

t29t+90

t1,t2(舍去),

綜上所述,當(dāng)△CBQ與△PAQ相似時(shí),tt;

2)當(dāng)t1時(shí),P10),Q32).

P1,0),Q32)代入拋物線yx2+bx+c中并解得:

拋物線:yx23x+2

∴頂點(diǎn)k,),

連接MQ,

Q3,2),M0,2),

MQx軸,

作拋物線對稱軸,交MQE,

KMKQ.∴KEMQ

∴∠MKE=∠QKEMKQ.設(shè)DQy軸于H

當(dāng)點(diǎn)D在直線MQ的上方時(shí),如圖②所示,

則∠DQMMKQ=∠MKE

∵∠HMQ=∠MEK90°,

∴△HMQ∽△MEK

,

,

解得MH2

H04).

∴直線HQ的解析式為y=﹣x+4

又∵yx23x+2,

x23x+2=﹣x+4

解得x13(舍),x2=﹣

D(﹣);

當(dāng)點(diǎn)D在直線MQ的下方時(shí),y軸上存在點(diǎn)H,如圖③所示,使∠HQMMKQ=∠MKE

由對稱性得H0,0),即H與原點(diǎn)重合.

∴直線OQ的解析式yx

又∵yx23x+2

x2﹣3x+2=x

解得x13(舍),x2

D).

綜上所述,點(diǎn)D的坐標(biāo)為(﹣,)或(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD的對稱中心在原點(diǎn)O,且A(2,1),B(3,﹣2)

1)求C點(diǎn)及D點(diǎn)的坐標(biāo);

2)求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市實(shí)驗(yàn)中學(xué)計(jì)劃在暑假第二周的星期一至星期五開展暑假社會(huì)實(shí)踐活動(dòng),要求每位學(xué)生選擇兩天參加活動(dòng).

1)甲同學(xué)隨機(jī)選擇連續(xù)的兩天,其中有一天是星期三的概率是   ;

2)乙同學(xué)隨機(jī)選擇兩天,其中有一天是星期三的概率是多少?(列表或畫樹形圖或列舉)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過點(diǎn)A2,3)和點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),作BCy軸,垂足為點(diǎn)C,連結(jié)AB,AC

1)求該反比例函數(shù)的解析式;

2)若ABC的面積為6,求直線AB的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負(fù)術(shù)和方程術(shù).這本書中有一個(gè)問題:今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?.用現(xiàn)代白話文可以這樣理解:甲口袋中裝有黃金9枚(每枚黃金重量相同),乙口袋中裝有白銀11枚(每枚白銀重量相同),用稱分別稱這兩個(gè)口袋的重量,它們的重量相等.若從甲口袋中拿出1枚黃金放入乙口袋中,乙口袋中拿出1枚白銀放入甲口袋中,則甲口袋的重量比乙口袋的重量輕了13兩(袋子重量忽略不計(jì)).問一枚黃金和一枚白銀分別重多少兩?請根據(jù)題意列方程(組)解之.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為4,點(diǎn)B是圓上一動(dòng)點(diǎn),點(diǎn)A為⊙O內(nèi)一定點(diǎn),OA4,將ABA點(diǎn)順時(shí)針方向旋轉(zhuǎn)120°AC,以ABBC為鄰邊作ABCD,對角線AC、BD交于E,則OE的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸交于A,B兩點(diǎn)(AB左邊),與軸交于C點(diǎn),頂點(diǎn)為P,OC=2AO.

(1)滿足的關(guān)系式;

(2)直線AD//BC,與拋物線交于另一點(diǎn)D,△ADP的面積為,求的值;

(3)(2)的條件下,過(1,-1)的直線與拋物線交于M、N兩點(diǎn),分別過M、N且與拋物線僅有一個(gè)公共點(diǎn)的兩條直線交于點(diǎn)G,求OG長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從一副完整的撲克牌中任意抽取1,下列事件與抽到“A”的概率相同的是(

A.抽到大王B.抽到“Q”C.抽到小王D.抽到紅桃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進(jìn)一批紀(jì)念冊,每本進(jìn)價(jià)為20元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價(jià)x(元)之間具有某種函數(shù)關(guān)系,其對應(yīng)規(guī)律如下表所示

售價(jià)x(元/本)

22

23

24

25

26

27

銷售量y(件)

36

34

32

30

28

26

1)請直接寫出yx的函數(shù)關(guān)系式:   

2)設(shè)該文店每周銷售這種紀(jì)念冊所獲得的利潤為W元,寫出Wx之間的函數(shù)關(guān)系式,并求出該紀(jì)念冊的銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊每周所獲利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案