如圖所示,一次函數(shù)y=x+m與反比例函數(shù)y=
6
x
的圖象的一個交點為P(a,2).

(1)求a及m的值;
(2)求一次函數(shù)的圖象與兩坐標(biāo)軸的交點的坐標(biāo);
(3)設(shè)(2)中的一次函數(shù)的圖象與x軸的交點為A,與y軸的交點為B,若在x軸上有一點E,使得以E,O,P為頂點的三角形與△AOB的面積相等,試寫出所有符合上述條件的點E的坐標(biāo).(只需回答出點E的坐標(biāo),不必寫出求解過程)
(1)∵點P(a,2)在反比例函數(shù)y=
6
x
的圖象上,
2=
6
x
,解得a=3,(2分)
∴點P的坐標(biāo)為(3,2),
又∵點P在一次函數(shù)y=x+m的圖象上,
∴2=3+m,解得m=-1;

(2)由(1)知,一次函數(shù)的解析式為y=x-1,
取y=0,得x=1,取x=0,得y=-1,
∴一次函數(shù)的圖象與x軸的交點坐標(biāo)為(1,0),與y軸的交點坐標(biāo)為(0,-1);(8分)

(3)(
1
2
,0)、(-
1
2
,0)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

反比例函數(shù)y
k
x
(k≠0)
的圖象經(jīng)過點(-8,10),則該反比例函數(shù)圖象在( 。
A.第一、三象限B.第二、四象限
C.第二、三象限D.第一、二象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,Rt△ABC(∠ABC=90°)的頂點A是雙曲線y=
k
x
與直線y=x+k的在第一象限的交點,C為y=x+k與x軸的交點.若S△ABO=1,
(1)求出這兩個函數(shù)的表達式和△ABC的面積;
(2)點M、N分別在x軸和y軸上,以A、C、M、N為頂點的四邊形為平行四邊形,求M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,P1(x1,y1)、P2(x2,y2),…P10(x10,y10)在函數(shù)y=
16
x
(x>0)的圖象上,△OP1A1,△P2A1A2,△P3A2A3…△P10A9A10都是等腰直角三角形,斜邊OA1,A1A2…A9A10,都在x軸上,則y1+y2+…+y10=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點M(-2,-1),且點P(-1,-2)為雙曲線上的一點,過P作PA垂直x軸于點A:
(1)寫出正比例函數(shù)和反比例函數(shù)的關(guān)系式;
(2)若點Q為直線MO上一動點(不與點M、O重合),過點Q作QB⊥y軸于點B,是否存在點Q,使△OBQ與△OAP面積相等?如果存在,請求出點Q的坐標(biāo);如果不存在,請說明理由;
(3)在(2)的條件下,在平面內(nèi)找一點C,使以O(shè)、P、C、Q為頂點的四邊形為平行四邊形,請直接寫出C點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將反比例函數(shù)y=
1
x
的圖象沿x軸向右平移1個單位長度后,該圖象不經(jīng)過第______象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=-2x-2與雙曲線y=
k
x
在第二象限內(nèi)的交點為A,與兩坐標(biāo)軸分別交于B、C兩點,AD⊥x軸于點D,如果△ADB與△COB全等,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點M是反比例函數(shù)y=
1
x
在第一象限內(nèi)圖象上的點,作MB⊥x軸于B.過點M的第一條直線交y軸于點A1,交反比例函數(shù)圖象于點C1,且A1C1=
1
2
A1M,△A1C1B的面積記為S1;過點M的第二條直線交y軸于點A2,交反比例函數(shù)圖象于點C2,且A2C2=
1
4
A2M,△A2C2B的面積記為S2;過點M的第三條直線交y軸于點A3,交反比例函數(shù)圖象于點C3,且A3C3=
1
8
A3M,△A3C3B的面積記為S3;以此類推…;則S1+S2+S3+…+S8=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P是反比例函數(shù)y=
k
x
圖象上一點,直線PQ交于x軸于Q點,PMX軸交y軸于M,且△OPQ是等腰直角三角形,△OPM的面積為1.
(1)求反比例函數(shù)的表達式;
(2)求Q點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案