【題目】如圖,正方形和正方形的頂點在同一條直線上,頂點在同一條直線上.是的中點,的平分線過點,交于點連接交于點連接.以下四個結論:①;②;③;④,其中正確的結論是____.
【答案】①②③
【解析】
①先利用正方形的性質證明,然后有,通過等量代換可得,則,即可判斷①的正誤;
②通過直角三角形斜邊中線的性質得出點H在正方形CGFE的外接圓上,然后根據(jù)圓周角定理的推論得出,即可判斷②的正誤;
③首先證明 ,則有,進而可得,由此可判斷③的正誤;
④先得出是的中位線,則,然后根據(jù)平行線分線段成比例得出 ,則有,進而可求出 ,又因為 ,則可判斷④的正誤.
∵四邊形ABCD和四邊形CGFE是正方形,
∴ .
在和中,
,
.
,
,
,
,故①正確;
是直角三角形,是的中點,
,
點H在正方形CGFE的外接圓上.
,
,
,故②正確;
∵GH平分,
.
,
.
在和中,
,
.
,
,
,故③正確;
∵四邊形CGFE是正方形,
∴.
,
.
,
是的中位線,
,
,
,
,
.
與高相同,
.
,
,
,故④錯誤.
故答案為:①②③.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,點O在對角線BD上,以OD的長為半徑的⊙O與AD,BD分別交于點E、點F,且∠ABE=∠DBC.
(1)判斷直線BE與⊙O的位置關系,并證明你的結論;
(2)若sin∠ABE=,CD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小昕的口袋中有5把相似的鑰匙,其中2把鑰匙(記為A1,A2)能打開教室前門鎖,而剩余的3把鑰匙(記為B1,B2,B3)不能打開教室前門鎖.
(1)小昕從口袋中隨便摸出一把鑰匙就能打開教室前門鎖的概率是 ;
(2)請用樹狀圖或列表等方法,求出小昕從口袋中第一次隨機摸出的一把鑰匙不能打開教室前門鎖(摸出的鑰匙不再放回),而第二次隨機摸出的一把鑰匙正好能打開教室前門鎖的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】本學期,大興區(qū)開展了“恰同學少年,品詩詞美韻”中華傳統(tǒng)詩詞大賽活動小江統(tǒng)計了班級30名同學四月份的詩詞背誦數(shù)量,具體數(shù)據(jù)如表所示:
詩詞數(shù)量首 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
人數(shù) | 3 | 4 | 4 | 5 | 7 | 5 | 1 | 1 |
那么這30名同學四月份詩詞背誦數(shù)量的眾數(shù)和中位數(shù)分別是
A. 11,7 B. 7,5 C. 8,8 D. 8,7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,點P以每秒1cm的速度從點A出發(fā),沿折線AC-CB運動,到點B停止.過點P作PD⊥AB,垂足為D,PD的長y(cm)與點P的運動時間x(秒)的函數(shù)圖象如圖2所示.當點P運動5秒時,PD的長是( )
A.1.5cmB.1.2cmC.1.8cmD.2cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的等邊△ABC和邊長為1的等邊△A′B′C′,它們的邊B′C′,BC位于同一條直線l上,開始時,點C′與B重合,△ABC固定不動,然后把△A′B′C′自左向右沿直線l平移,移出△ABC外(點B′與C重合)停止,設△A′B′C′平移的距離為x,兩個三角形重合部分的面積為y,則y關于x的函數(shù)圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的對角線OB,AC相交于點D,OA=3,OC=2,且BE∥AC,AE∥OB.
(1)求證:四邊形AEBD是菱形;
(2)求經(jīng)過點E的雙曲線對應的函數(shù)解析式;
(3)設經(jīng)過點E的雙曲線與直線BE的另一交點為F,過點F作x軸的平行線,交經(jīng)過點B的雙曲線于點G,交y軸于點H,求△OFG的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.
(1)求證:四邊形ABCD是矩形;
(2)若DE=3,OE=9,求AB、AD的長;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,于,且.點從點出發(fā),沿方向勻速運動,速度為;同時直線由點出發(fā)沿方向勻速運動,速度為,運動過程中始終保持,直線交于,交于,連接,設運動時間為.
(1)___________,__________,_____________;(用含的式子表示)
(2)當四邊形是平行四邊形時,求的值;
(3)當點在線段的垂直平分線上時,求的值;
(4)是否存在時刻,使以為直徑的圓與的邊相切?若存在,直接寫出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com