【題目】小昕的口袋中有5把相似的鑰匙,其中2把鑰匙(記為A1A2)能打開教室前門鎖,而剩余的3把鑰匙(記為B1,B2B3)不能打開教室前門鎖.

1)小昕從口袋中隨便摸出一把鑰匙就能打開教室前門鎖的概率是   ;

2)請用樹狀圖或列表等方法,求出小昕從口袋中第一次隨機摸出的一把鑰匙不能打開教室前門鎖(摸出的鑰匙不再放回),而第二次隨機摸出的一把鑰匙正好能打開教室前門鎖的概率.

【答案】1;(2

【解析】

1)直接利用概率公式求解即可求得答案;

2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與第一次隨機摸出的一把鑰匙不能打開教室前門鎖(摸出的鑰匙不再放回),而第二次隨機摸出的一把鑰匙正好能打開教室前門鎖的情況,再利用概率公式即可求得答案.

1)∵一個口袋中裝有5把不同的鑰匙,分別為A1A2,B1B2,B3,

P(取出一個A1A2=

故答案為:;

2)畫樹狀圖得:

∵共有20種等可能的結果,第一次隨機摸出的一把鑰匙不能打開教室前門鎖(摸出的鑰匙不再放回),而第二次隨機摸出的一把鑰匙正好能打開教室前門鎖的有6種可能,

∴第一次隨機摸出的一把鑰匙不能打開教室前門鎖(摸出的鑰匙不再放回),而第二次隨機摸出的一把鑰匙正好能打開教室前門鎖的概率==

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,為矩形的邊上一點,動點同時從點出發(fā),點沿折線運動到點時停止,點沿運動到點時停止,它們運動的速度都是秒.設同時出發(fā)秒時,的面積為,已知的函數(shù)關系圖象如圖2所示.請回答:

1)線段的長為_______cm;

2)當運動時間秒時,之間的距離是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠B=90°,BC=4,AB=8,點D是邊AC的中點,動點P在邊AB(P不與點A重合),連接PD、PC,將△PDC沿直線PD翻折,點C落在點E處得△PDE

1)如圖①,若點E恰好與點A重合,求線段AP的長;

2)如圖②,若EDAB于點F,四邊形CDEP為菱形,求證:△PFE≌△AFD

3)連接AE,設△PDE與△ABC重疊部分的面積為S1,△PAC的面積為S2,若S1=S2時,請直接寫出tanAED的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線的圖象過,三點,頂點為

(1)求拋物線的解析式;

(2)設點軸上,且,求的長;

(3)軸且在拋物線上,過在直線上運動,點軸上運動,是否存在這樣的點、使以、、為頂點的三角形與相似?若存在,請求出點、的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在雙曲線y上,點B在雙曲線yk≠0)上,ABx軸,過點AADx軸于D.連接OB,與AD相交于點C,若AC=2CD,則k__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某籃球隊5名場上隊員的身高(單位:cm)是:183、187190、200、210,現(xiàn)用一名身高為195cm的隊員換下場上身高為210cm的隊員,與換人前相比,場上隊員的身高( 。

A.平均數(shù)變大,方差變大B.平均數(shù)變小,方差變大

C.平均數(shù)變大,方差變小D.平均數(shù)變小,方差變小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商家銷售一款商品,進價每件80元,售價每件145元,每天銷售40件,每銷售一件需支付給商場管理費5元,未來一個月30天計算,這款商品將開展每天降價1的促銷活動,即從第一天開始每天的單價均比前一天降低1元,通過市場調查發(fā)現(xiàn),該商品單價每降1元,每天銷售量增加2件,設第xx為整數(shù)的銷售量為y件.

直接寫出yx的函數(shù)關系式;

設第x天的利潤為w元,試求出wx之間的函數(shù)關系式,并求出哪一天的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形和正方形的頂點在同一條直線上,頂點在同一條直線上.的中點,的平分線過點,交于點連接于點連接.以下四個結論:①;②;③;④,其中正確的結論是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yk1x+b的圖象與反比例函數(shù)y的圖象相交于點A(﹣1,4)和點B4,n).

1)求這兩個函數(shù)的解析式;

2)已知點M在線段AB上,連接OA,OBOM,若SAOMSBOM,求點M的坐標.

查看答案和解析>>

同步練習冊答案