【題目】如圖,△ABC中,DBC邊上一點(diǎn),EAD的中點(diǎn),過(guò)點(diǎn)ABC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AFBD,連接BF

1)求證:△AEF≌△DEC;

2)若ABAC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

【答案】(1)詳見(jiàn)解析;(2):若ABAC,則四邊形AFBD是矩形,理由詳見(jiàn)解析.

【解析】

1)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠AFE=DCE,∠FAE=CDE,然后利用角角邊證明AEFDEC全等;
2)由(1)知AF平行等于BD,易證四邊形AFBD是平行四邊形,而AB=AC,AD是中線,利用等腰三角形三線合一定理,可證ADBC,即∠ADB=90°,那么可證四邊形AFBD是矩形.

1)證明:∵AFBC,

∴∠AFE=∠DCE,∠FAE=∠CDE,

∵點(diǎn)EAD的中點(diǎn),

AEDE,

AEFDEC中,

∴△AEF≌△DECAAS);

2)解:若ABAC,則四邊形AFBD是矩形.理由如下:

AFBD,AFBD,

∴四邊形AFBD是平行四邊形,

∵△AEF≌△DEC

AFCD,

AFBD,

CDBD;

ABACBDCD,

∴∠ADB90°

∴平行四邊形AFBD是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是邊長(zhǎng)為1的等邊三角形,是等腰直角三角形,且

1)求的長(zhǎng).

2)連接于點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過(guò)15m/s在一條筆直公路BD的上方A處有一探測(cè)儀,如平面幾何圖,AD=24m,D=90°,第一次探測(cè)到一輛轎車(chē)從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°,2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m.

1)求B,C的距離.

2)通過(guò)計(jì)算,判斷此轎車(chē)是否超速.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC 內(nèi)任取一點(diǎn) P (如圖①),連接 PBPC,探索∠BPC 與∠A,∠ABP,∠ACP 之間的數(shù)量關(guān)系,并證明你的結(jié)論:當(dāng)點(diǎn) P 在△ABC 外部時(shí) (如圖②),請(qǐng)直接寫(xiě)出∠BPC 與∠A,∠ ABP,∠ACP 之間的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,DBA延長(zhǎng)線上的一點(diǎn),點(diǎn)EAC的中點(diǎn).

1)利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫(xiě)作法):作∠DAC的平分線AM,連接BE并延長(zhǎng)交AM于點(diǎn)F

2)試猜想AFBC有怎樣的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(﹣3,0)、B0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1、△2、△3、△4,△16的直角頂點(diǎn)的坐標(biāo)為( 。

A. 60,0 B. 720 C. 67, D. 79,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bx與y=bx+a的圖像可能是(  。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB⊙O的直徑,點(diǎn)C、D⊙O上,且BC=6cm,AC=8cm,∠ABD=45°

1)求BD的長(zhǎng);

2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,以AB為直徑作半圓⊙OAC于點(diǎn)D,點(diǎn)EBC的中點(diǎn),連接DE.

(1)求證:DE是半圓⊙O的切線;

(2)若∠BAC=30°,DE=2,求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案