【題目】在△ABC 內(nèi)任取一點 P (如圖①),連接 PB、PC,探索∠BPC 與∠A,∠ABP,∠ACP 之間的數(shù)量關(guān)系,并證明你的結(jié)論:當點 P 在△ABC 外部時 (如圖②),請直接寫出∠BPC 與∠A,∠ ABP,∠ACP 之間的數(shù)量關(guān)系。

【答案】見解析

【解析】

根據(jù)三角形的內(nèi)角和和四邊形的內(nèi)角和即可得到結(jié)論.

ABC內(nèi)任取一點P

則∠BPC=A+ABP+ACP,

理由:∵∠BPC=180°(PBC+PCB)

∴∠A+ABP+PBC+ACP+PCB=180°,

A+ABP+ACP=180°(PBC+PCB),

∴∠BPC=A+ABP+ACP

當點PABC外部時,

四邊形ABPC內(nèi)角和為360°,

∴∠BPC+A+ABP+ACP=360°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某學(xué)校高中兩個班的學(xué)生上學(xué)時步行、騎車、乘公交、乘私家車人數(shù)的扇形統(tǒng)計圖,已知乘公交人數(shù)是乘私家車人數(shù)的2.若步行人數(shù)是18人,則下列結(jié)論正確的是( )

A. 被調(diào)查的學(xué)生人數(shù)為90

B. 乘私家車的學(xué)生人數(shù)為9

C. 乘公交車的學(xué)生人數(shù)為20

D. 騎車的學(xué)生人數(shù)為16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1l2,直線l3和直線l1l2交于點CD,點P是直線l3上一動點

1)如圖1,當點P在線段CD上運動時,PACAPB,PBD之間存在什么數(shù)量關(guān)系?請你猜想結(jié)論并說明理由.

2)當點PC、D點的外側(cè)運動時(P與點CD不重合,如圖2和圖3),上述(1)中的結(jié)論是否還成立?若不成立,請直接寫出PACAPB,PBD之間的數(shù)量關(guān)系,不必寫理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古希臘時期,人們認為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(,稱為黃金比例),如圖,著名的“斷臂維納斯”便是如此,此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是,若某人的身材滿足上述兩個黃金比例,且頭頂至咽喉的長度為,則其升高可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某機器零件的橫截面如圖所示,按要求線段ABDC的延長線相交成直角才算合格,一工人測得∠A=23°,D=31°,AED=143°,請你幫他判斷該零件是否合格:___.(合格不合格”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙ORtABC的斜邊AB相切于點D,與直角邊AC相交于E、F兩點,連結(jié)DE,已知∠B=30°,O的半徑為12,弧DE的長度為

1)求證:DEBC;

2)若AF=CE,求線段BC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DBC邊上一點,EAD的中點,過點ABC的平行線交CE的延長線于點F,且AFBD,連接BF

1)求證:△AEF≌△DEC

2)若ABAC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務(wù)所需天數(shù)是甲工程隊單獨完成修路任務(wù)所需天數(shù)的1.5倍

(1)求甲、乙兩個工程隊每天各修路多少千米?

(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)條件求二次函數(shù)的解析式:

(1)拋物線的頂點坐標為(﹣1,﹣1),且與y軸交點的縱坐標為﹣3

(2)拋物線在x軸上截得的線段長為4,且頂點坐標是(3,﹣2).

查看答案和解析>>

同步練習(xí)冊答案