【題目】如圖,P為反比例函數(shù)y=(k>0)在第一象限內(nèi)圖象上的一點,過點P分別作x軸,y軸的垂線交一次函數(shù)y=﹣x﹣4的圖象于點A、B.若∠AOB=135°,則k的值是( 。
A. 2 B. 4 C. 6 D. 8
【答案】D
【解析】解:作BF⊥x軸,OE⊥AB,CQ⊥AP.設(shè)P點坐標(biāo)(n,),∵直線AB函數(shù)式為y=﹣x﹣4,PB⊥y軸,PA⊥x軸,∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45°.∵PB∥OG,PA∥OC,∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,∴PA=PB.∵P點坐標(biāo)(n,),∴OD=CQ=n,∴AD=AQ+DQ=n+4.
∵當(dāng)x=0時,y=﹣x﹣4=﹣4,∴OC=DQ=4,GE=OE=OC=.
同理可證:BG=BF=PD=,∴BE=BG+EG=.
∵∠AOB=135°,∴∠OBE+∠OAE=45°,∵∠DAO+∠OAE=45°,∴∠DAO=∠OBE.在△BOE和△AOD中,∵∠DAO=∠OBE,∠BEO=∠ADO,∴△BOE∽△AOD,∴,即,整理得:nk+2n2=8n+2n2,化簡得:k=8.故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】①如圖,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度數(shù).
②先化簡再求值:化簡:,x=2020.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,O為直線AB上一點,∠AOC=30°,點C在AB的上方.MON為直角三角板,O為直角頂點,,ON在射線OC上.將三角板MON繞點O以每秒6°的速度沿逆時針方向旋轉(zhuǎn),與此同時,射線OC繞點O以每秒11°的速度沿逆時針方向旋轉(zhuǎn),當(dāng)射線OC與射線OA重合時,所有運動都停止.設(shè)運動的時間為t秒,
(1)旋轉(zhuǎn)開始前,∠MOC= °,∠BOM= °;
(2)運動t秒時,OM轉(zhuǎn)動了 °,t為 秒時,OC與OM重合;
(3)t為何值時,∠MOC=35°?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:探究函數(shù)的圖象與性質(zhì).小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究.下面是小華的探究過程,請補充完整:在函數(shù)y=|x|﹣2中,自變量x可以是任意實數(shù);
Ⅰ如表是y與x的幾組對應(yīng)值.
y | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
x | … | 1 | 0 | ﹣1 | ﹣2 | ﹣1 | 0 | m | … |
①m= ;
②若A(n,8),B(10,8)為該函數(shù)圖象上不同的兩點,則n= ;
Ⅱ如圖,在平面直角坐標(biāo)系xOy中,描出以上表中各對對應(yīng)值為坐標(biāo)的點.并根據(jù)描出的點,畫出該函數(shù)的圖象;根據(jù)函數(shù)圖象可得:
①該函數(shù)的最小值為 ;
②該函數(shù)的另一條性質(zhì)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB于點E.
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點,BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車銷售公司經(jīng)銷某品牌A款汽車,隨著汽車的普及,其價格也在不斷下降.今年5月份A款汽車的售價比去年同期每輛降價1萬元,如果賣出相同數(shù)量的A款汽車,去年銷售額為100萬元,今年銷售額只有90萬元.
(1)今年5月份A款汽車每輛售價多少萬元?
(2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的B款汽車,已知A款汽車每輛進價為7.5萬元,B款汽車每輛進價為6萬元,公司預(yù)計用不多于105萬元且不少于99萬元的資金購進這兩款汽車共15輛,有幾種進貨方案?
(3)如果B款汽車每輛售價為8萬元,為打開B款汽車的銷路,公司決定每售出一輛B款汽車,返還顧客現(xiàn)金a萬元,要使(2)中所有的方案獲利相同,a值應(yīng)是多少?此時,哪種方案對公司更有利?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋里裝有紅、黃、綠三種顏色的球(除顏色不同外其余都相同),其中紅球有2個,黃球有1個,從中任意捧出1球是紅球的概率為.
(1)試求袋中綠球的個數(shù);
(2)第1次從袋中任意摸出1球(不放回),第2次再任意摸出1球,請你用畫樹狀圖或列表格的方法,求兩次都摸到紅球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com