【題目】在平面直角坐標系中,已知,.
(1)如圖1,求的值.
(2)把繞著點順時針旋轉,點、旋轉后對應的點分別為、.
①當恰好落在的延長線上時,如圖2,求出點、的坐標.
②若點是的中點,點是線段上的動點,如圖3,在旋轉過程中,請直接寫出線段長的取值范圍.
【答案】(1);(2)①,②;(3)
【解析】
(1)作AH⊥OB,根據正弦的定義即可求解;
(2)作MC⊥OB,先求出直線AB解析式,根據等腰三角形的性質及三角函數的定義求出M點坐標,根據MN∥OB,求出N點坐標;
(3)由于點C是定點,點P隨△ABO旋轉時的運動軌跡是以B為圓心,BP長為半徑的圓,故根據點和圓的位置關系可知,當點P在線段OB上時,CP=BP-BC最短;當點P在線段OB延長線上時,CP=BP+BC最長.又因為BP的長因點D運動而改變,可先求BP長度的范圍.由垂線段最短可知,當BP垂直MN時,BP最短,求得的BP代入CP=BP-BC求CP的最小值;由于BM>BN,所以點P與M重合時,BP=BM最長,代入CP=BP+BC求CP的最大值.
(1)作AH⊥OB,
∵,.
∴H(3,5)
∴AH=3,AH=
∴==
(2)由(1)得A(3,4),又
求得直線AB的解析式為:y=
∵旋轉,∴MB=OB=6,
作MC⊥OB,∵AO=BO,
∴∠AOB=∠ABO
∴MC=MBsin∠ABO=6×=
即M點的縱坐標為,代入直線AB得x=
∴,
∵∠NMB=∠AOB=∠ABO
∴MN∥OB,又MN=AB=5,
則+5=
∴
(3)連接BP
∵點D為線段OA上的動點,OA的對應邊為MN
∴點P為線段MN上的動點
∴點P的運動軌跡是以B為圓心,BP長為半徑的圓
∵C在OB上,且CB=OB=3
∴當點P在線段OB上時,CP=BPBC最短;當點P在線段OB延長線上時,CP=BP+BC最長
如圖3,當BP⊥MN時,BP最短
∵S△NBM=S△ABO,MN=OA=5
∴MNBP=OByA
∴BP= ==
∴CP最小值=3=
當點P與M重合時,BP最大,BP=BM=OB=6
∴CP最大值=6+3=9
∴線段CP長的取值范圍為.
科目:初中數學 來源: 題型:
【題目】請用學過的方法研究一類新函數(為常數,)的圖象和性質.
(1)在給出的平面直角坐標系中畫出函數的圖象;
(2)對于函數,當自變量的值增大時,函數值怎樣變化?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“2019大洋灣鹽城馬拉松”的賽事共有三項:A,“全程馬拉松”、B,“半程馬拉松”、C.“迷你健身跑”,小明和小剛參與了該項賽事的志愿者服務工作,組委會隨機將志愿者分配到三個項目組.
(1)小明被分配到“迷你健身跑”項目組的概率為 ;
(2)求小明和小剛被分配到不同項目組的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場計劃購進A,B兩種型號的手機,已知每部A型號手機的進價比每部B型號手機進價多500元,若商場用50000元共購進A型號手機10部,B型號手機20部,求A、B兩種型號的手機每部進價各是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在綜合實踐課中,小慧將一張長方形卡紙如圖1所示裁剪開,無縫隙不重疊的拼成如圖2所示的“”形狀,且成軸對稱圖形.裁剪過程中卡紙的消耗忽略不計,若已知,,.
求(1)線段與的差值是___
(2)的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某數學興趣小組想測量一棵樹的高度,在陽光下,一名同學測得一根長為1m的竹竿的影長為0.5m,同時另一名同學測量一棵樹的高度時,發(fā)現樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上,其中,落在墻壁上的影長為0.8m,落在地面上的影長為4.4m,則樹的高為_______m.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com